나무모에 미러 (일반/밝은 화면)
최근 수정 시각 : 2024-07-03 16:36:47

수소자동차

수소전기차에서 넘어옴

🚗 자동차 관련 문서
{{{#!wiki style="margin:0 -10px -5px; min-height:calc(1.5em + 5px); word-break:keep-all"
{{{#!folding [ 펼치기 · 접기 ]
{{{#!wiki style="margin:-6px -1px -11px"
차급(세그먼트)
경형(A) · 소형(B) · 준중형(C) · 중형(D) · 준대형(E) · 대형(F)
마이크로 · SUV(J) · MPV(M) · 스포츠 쿠페(S)
바디 스타일
<colbgcolor=#eee,#000>원박스승합차 · LCV · 경상용차
투박스해치백 · 왜건(스테이션 왜건 · 에스테이트 · 슈팅 브레이크)
쓰리박스세단 · 쿠페 · 노치백 · 패스트백
컨버터블컨버터블 · 로드스터 · 타르가 · T-탑 · 브로엄
이륜자동차오토바이(틀:오토바이) · 사이드카 · ATV
기타코치 빌드 · 리무진 · 후드 오너먼트 · 패널 밴 · 크로스오버 · 삼륜차
용도
승용비즈니스 세단 · 쇼퍼드리븐 자동차 · 퍼스널 럭셔리 카 · 패밀리카 · 택시
스포츠카그랜드 투어러 · 포니카 · 머슬카 · 스포츠 세단 · 핫해치 · 슈퍼카 · 하이퍼카
RVSUV(오프로더 · CUV · 쿠페형 SUV) · MPV(LAV) · 픽업트럭 · 캠핑카
상용차승합차 · LCV · 경상용차 · 버스 · 트럭 · 트레일러
군용차소형전술차량 · 기갑차량(장갑차 · 전차 · 자주포)
특수목적긴급자동차(소방차 · 경찰차 · 구급차) · 농기계 · 건설기계 · 구난차 · 방탄차 · 공항 작업차량 · 항구 작업차량 · 경호차 · 방송차 · 취재차 · 현금수송차 · 장의차 · 우편차 · 운전교육 및 시험용 차량 · 헌혈차
기타자가용 · 올드카(클래식카) · 레이스 카 · 콘셉트 카 · 뚝뚝 · 오토릭샤 · 고카트 · 핫로드 · 로우라이더 · 수륙양용차 · 커넥티드 카 · 자율주행차 · PRT · PAV
추진 방식
외연기관증기 자동차
내연기관가솔린(자연흡기 · TJI · 린번 · GDI · MPI · TSI · HCCI · LPG) · 디젤(CRDi · VGT) · 바이퓨얼 · 수소내연기관 · 목탄자동차
에너지 저장 체계(연료)화석 연료 · 이차 전지 · 바이오 디젤 · CNG · 경유 · 에탄올 · 수소(연료전지)
전기전기자동차 · 수소자동차
하이브리드하이브리드 자동차(풀 하이브리드 · 마일드 하이브리드) · 플러그인 하이브리드
구동 방식
구동 바퀴전륜구동 · 후륜구동 · 2륜구동 · 4WD(4륜구동)
레이아웃(엔진/구동)FF · FR · RMR · RR
엔진 구성수평대향 엔진(수평대향 · 플랫(박서)) · 왕복 · 단기통 · 직렬 · V형 · 반켈}}}}}}}}}
파일:hyundai-nexo-1.jpg
현대 넥쏘
파일:현대 일렉시티.jpg
현대 일렉시티 수소전기버스

1. 개요2. 종류
2.1. 수소 연료 전지 자동차2.2. 수소 내연기관 자동차2.3. 나무위키에 문서가 있는 차량 모델
3. 특징
3.1. 수소생산 관련3.2. 수소 탱크 관련3.3. 수소 충전 관련3.4. 연료 전지 관련
4. 역사
4.1. 공통 사항4.2. 수소 연료 전지 자동차
4.2.1. 1990년 이전4.2.2. 1990년, 친환경차 붐4.2.3. 2000년대 초반, 친환경차 혹한기4.2.4. 2008년~, 전기차로 인한 혹한기4.2.5. 2017년, 돌아온 친환경차 붐4.2.6. 2020년4.2.7. 2021년4.2.8. 2022년4.2.9. 2023년4.2.10. 2024년
4.3. 수소 내연기관 자동차
4.3.1. 1957년, 보관의 어려움4.3.2. 1994년, 효율의 어려움4.3.3. 2015년, 부활의 움직임4.3.4. 2021년4.3.5. 2022년4.3.6. 2023년4.3.7. 2024년
5. 비교
5.1. 천연가스 차량과의 비교5.2. 전기자동차보다 불리한 점5.3. 전기자동차보다 유리한 점5.4. 전기자동차와의 중립 및 논쟁적 사안
6. 전망
6.1. 수소차와 전기차의 공존 전망6.2. 수소차의 가격 전망6.3. SOFC 연료 전지 사용 검토
7. 관련 문서

[clearfix]

1. 개요

수소자동차(, Hydrogen Vehicle(영문 위키피디아))는 수소를 연료로 하여 구동하는 차량을 말한다.

2. 종류

2.1. 수소 연료 전지 자동차

파일:수소차 작동원리.jpg
수소 연료 전지 자동차의 원리

일반적으로 수소차라고 하면 이것을 말한다. 엄밀히는 전기자동차의 연장이다. 전기자동차가 배터리만을 실은 것에 비해, 수소연료 전지차는 배터리의 양을 최소화하고, 수소 탱크-연료 전지를 추가하여 수소로 연료 전지 발전을 하여 배터리를 충전시키는 방식이다. 직렬식 하이브리드 자동차디젤 기관차를 생각하면 된다.

2.2. 수소 내연기관 자동차

영문 위키피디아(Hydrogen Internal Combustion Engine Vehicle). 기존 내연기관 자동차들과 똑같이, 수소(연료. 기존의 가솔린/디젤 대신)를 산소(산화제)와 폭발적으로 연소시켜서 구동력을 얻는 방식이다. 기존 내연기관 매커니즘에 연료만 변경해 친환경 파워트레인을 구축할 수 있고, 수소 연료 전지 자동차와 역사도 비슷하게 오래됐다.

2.3. 나무위키에 문서가 있는 차량 모델

이름만 있는 것은 연료 전지 전용 모델. FCEV가 붙은 것은 동 브랜드/디자인으로 석유/전기/수소자동차로 다양하게 판매되는 경우를 의미한다.

3. 특징

3.1. 수소생산 관련

3.2. 수소 탱크 관련

수소자동차는 기존 차량 안전성평가에 추가로 수소 탱크 인증시험을 통과하여 출시한다.
비합리적 비판으로는 다음과 같다.
합리적인 비판으로는 다음과 같다.

3.3. 수소 충전 관련

파일:상세 내용 아이콘.svg   자세한 내용은 수소충전소 문서
번 문단을
부분을
참고하십시오.
관련 논쟁(장단점, 충전시간, 건설비, 안전기준 등)은 해당 문서로 옮겼다.

3.4. 연료 전지 관련

파일:상세 내용 아이콘.svg   자세한 내용은 연료 전지 문서
번 문단을
부분을
참고하십시오.

4. 역사

4.1. 공통 사항

4.2. 수소 연료 전지 자동차

4.2.1. 1990년 이전

4.2.2. 1990년, 친환경차 붐

4.2.3. 2000년대 초반, 친환경차 혹한기

4.2.4. 2008년~, 전기차로 인한 혹한기

4.2.5. 2017년, 돌아온 친환경차 붐

2017~2018년, 각국이 화석연료 자동차 퇴출 시기를 발표하기 시작한다. 가장 앞선 노르웨이와 네덜란드의 경우 2025년 퇴출. 영국의 경우 2035년 퇴출. 이에 따라 수소자동차 역시 긴 혹한기를 지나 다시금 훈풍이 일기 시작한다. #

4.2.6. 2020년

4.2.7. 2021년

4.2.8. 2022년

4.2.9. 2023년

4.2.10. 2024년

4.3. 수소 내연기관 자동차

4.3.1. 1957년, 보관의 어려움

4.3.2. 1994년, 효율의 어려움

4.3.3. 2015년, 부활의 움직임

4.3.4. 2021년

4.3.5. 2022년

4.3.6. 2023년

4.3.7. 2024년

5. 비교

5.1. 천연가스 차량과의 비교

2021년 9월 대한민국 기준 수소버스는 6억 5천만원, 기존 천연 가스 버스는 1억 3천만원으로 5배의 차이가 난다. 이에 예산을 아끼려는 지자체들이 반발하며 두 버스를 비교하곤 했다. #

5.2. 전기자동차보다 불리한 점

5.3. 전기자동차보다 유리한 점

5.4. 전기자동차와의 중립 및 논쟁적 사안

6. 전망

6.1. 수소차와 전기차의 공존 전망

두 방식이 공존한다는 이런 저런 정책홍보성 전망이 있어왔으나 2024년까지도 수소차는 본격적인 자동차 시장에 끼지조차 못하고 있고, 그냥 화석연료차 주류에 축전지 전기차(BEV)가 공존하며 조금씩 세를 넓히고 있는 형세다. 공존을 전망한 아래 자료들이 작성된지 5년 이상 흘렀지만 그간 수소차 점유율은 제자리 걸음이었고 전기차와의 격차는 좁혀지기는 커녕 더욱 크게 벌어지기만 했다.

6.2. 수소차의 가격 전망

수소차의 가격이 동급 내연기관 및 전기차에 비해 고가인 이유는 연료 전지 등 핵심부품의 가격이 비싸기 때문. 가격 하락을 위해 한국 정부는 기술개발 지원으로 핵심부품 국산화율 100% 달성을 추진하고 있다. 아울러 생산능력 확충을 통해 규모의 경제에 따른 원가 하락이 이루어지면 가격경쟁력 확보가 가능하다는 판단이다.

2019년 기준
2021년 기준

6.3. SOFC 연료 전지 사용 검토

수소차에 일반적인 PEMFC(폴리머 멤브레인 연료 전지)가 아닌 SOFC(고체 산화물 연료 전지)를 이용하면 수소 뿐 아니라 천연가스도 연료 전지의 연료로 사용할 수 있다. SOFC는 아래와 같은 특성들 때문에 주로 고정형, 발전소용으로 사용되는데, 차량용으로 쓸 수 있지 않겠냐는 주장이 있다. (상용차급은 아니고 수소선박과 같이 대형에서는 천연가스 SOFC가 검토되기도 한다)

7. 관련 문서


[1] 2021년에 단종.[2] 2018년에 국내 시장 단종.[3] 2017년 2월 15일 소프트웨어 결함으로 인해 전량 회수.[4] 2024년 2세대 출시 예정.[5] FCEV가 붙지 않지만, 하이브리드형과 수소연료 전지 사양 둘 다 지원한다.[6] 리터로 환산하면, 7~8km/l로 나온다.[7] 2021년 12월 28일, 서산 고속도로에서 수소를 운반하던 트럭에 타이어 화재가 나자, 수소 탱크가 위쪽을 향해 노즐을 열어 수소를 뿜었고, 20m의 불기둥이 생겼다. 유출물이 아래로 깔려서 운전자와 주변이 피해를 입는 가스-석유차량에 비해 오히려 수소 용기의 안전성을 알렸다는 평가가 나왔다. #[8] 한국산업안전보건공단 MSDS, 미국화학공학회 DIPPR에 나오는 '연료별 상대적 위험도'에 따르면, 수소가 1이라고 하면 천연가스(LNG, 도시가스)는 1.03, LPG는 1.22, 가솔린(휘발유)는 1.44다.[9] 예컨대 2018년 출시된 현대 넥쏘의 안전성 시험 영상은 다음과 같다. # 현대 넥쏘는 유로 NCAP '가장 안전한 SUV' 선정 #, 미국 비영리 자동차 안전연구기관인 고속도로안전보험협회(IIHS)가 실시한 측면 대차 충돌 테스트에서 '모두 GOOD' 등급 선정 #. 한국가스안전공사, 한국교통안전공단 영국 교통부 차량인증국(VCS), 독일 기술검사협회(TUV) 등 인증 기관으로부터 인증을 받았다.[10] 당장에 50년도 더된 1969년에 달로 사람을 보낸 로켓에도 액체 수소 탱크가 장착됐다.[11] 이는 수동변속기 차량과 비슷했다. 2020년대 현재는 수동 차량을 운전할 수 있는 대리기사가 거의 없으니...[12] 국가보다 지자체가 앞서 나선 이유는 안희정 당시 도지사가 대권주자로서 모습을 보이기 위한 결정 때문이었다. 안희정이 사퇴한 후에도 충청남도의 수소차 정책은 변함없이 유지된다.[13] 다만 수소 탱크의 수가 2개로 낵소에 비해서 1개 줄었다[14] 64.2 Kw배터리 아이오닉 6 기본형보다도 10kw 가량 큰 수치다.[15] 왜 '대부분'이냐 하면, SGM 및 슈트룸젠더의 머신은 전기차이기 때문이다.[16] 당시 7시리즈 롱바디가 기본으로 1억 5천만이 넘어가던 것을 생각하면 그렇게 비싼건 아니다[17] 그러나 수소내연기관으로 생성되는 질소산화물의 양은 극히 미량이라 무시가 가능한 수준이다. 생선을 구울 때 나오는 오염물의 양 수준이고 이 정도면 자연 생태계 내에서 충분히 분해가 가능한 수준이다.[18] 700bar의 기체수소는 0.039 kg/L이므로, 51.3km/kg의 연비가 된다. 수소연료 전지차는 100km/kg 가량이므로 약 절반의 연비다.[19] 물론 이 코롤라는 레이싱용으로 만든 거라는걸 감안할 필요가 있다.[20] 다만 마쓰다 홈페이지에 나와있는 자료를 봐도 알 수 있지만, 아직까지 100% 수소내연기관으로 갈지, 수소를 포함한 혼합연료 엔진으로 갈지, 로터리 엔진의 컴팩트함을 십분발휘하여 발전기로 사용할지는 명확히 정하지 않고 열린 자세로 연구를 진행하고 있는 듯 하다.[21] 화석연료의 국제환경규제와 유류세 변화, 수소충전소의 건설비 보상 및 수소생산방식 다원화에 의한 수소가격 변화, 발전소 건설과 전기수요에 따른 전기가격 변화 등은 '전망'의 영역.[22] 다만 전기차 충전소의 경우 충전용량에 따라 전기 시설을 증설해야 하는 경우도 있다. 가정용 저속 충전기라도 전기용량이 1kW는 그냥 넘는 경우가 대부분이다. 아파트 주차장이라면 그런 충전기가 수십, 수백대가 동시에 동작하는 상황도 충분히 가능하다. 그 정도의 전력이라면 전기 증설은 필수적이다.[23] 2022년 기준으로, 기체수소 보관탱크가 어차피 많으므로 충전구별로 다른 압력탱크를 이용하게 하거나, 액체수소를 이용하여 냉각이 별도로 필요 없는 방식으로 보완하는 연구들이 이뤄지고 있다.[24] 전기차 충전소는 폐점 시간이 있는 업소 내부에 설치된 경우가 아니라면 대부분 무인으로 24시간 영업한다.[25] 이는 LPG 차량도 공유하는 문제로 LPG를 쓰는 택시 트렁크를 보면 트렁크 용량 크기로 유명한 승용차라도 LPG 탱크 때문에 트렁크가 작은걸 볼 수 있다.[26] 마력으로 환산하면 125마력. 아반떼 CN7의 자연흡기 가솔린 1.6L 엔진 출력(123마력) 수준[27] 넥쏘의 0~100km/h 가속은 9.2초 대로 알려져 있다. 그래도 모터의 장점인 저속 최대토크 덕분에 선방하는 것이 이 정도.[28] 현대 넥쏘토요타 미라이 기준. 열전도율은 두 매질의 온도차에 비례한다.[29] 특히 화물차들은 높은 토크가 요구되는데 연료 전지로 제일 하기 힘든게 고토크 조건이다. 출력전류가 부족하기 때문이다. 그래서 연료 전지도 2대 내지 3대씩 설치하는데 이러면 냉각과 부피의 손해가 막심하고 수소 탱크를 설치할 공간이 줄어든다.[30] 항공기는 최소한 자체중량만큼의 공기를 밀어내면서 고도를 유지하는 것이기 때문에 에너지효율을 따지는게 거의 무의미하다. 항공기의 전동화는 효율보다는 막대한 연료사용에서 비롯되는 매연 등을 저감하는 친환경성에 의의가 있다.[31] 다만 가압하고 결로를 녹이고 하는데 거의 20분 정도가 소요된다. 1시간에 5대 충전 가능한 수준. 전기차의 급속 충전과 큰 차이가 없으며 전기차의 경우 중간에 언제든지 분리해서 충전하고싶은 만큼 충전 후 가면 되지만 수소차는 연료주입 자체는 큰 시간이 걸리지 않으나 가압은 필수적이므로 결국 20분이 온전히 소요되야 한다. 장점이라고 할 수 있는지 애매한 부분.[32] 주유소 1만 881개, 전기차 충전소 23만 2845개[33] 다만 천연가스가 더 위험하다고 할 수 있는 근거가 확실치 않다. 가스의 폭발 위험을 평가하는 기준으로 위험도 = 폭발범위(상한-하한)/폭발하한 으로 계산시 수소의 경우 폭발범위는 4~75 % 이고 천연가스는 5~15% 이므로 밀폐 공간인 경우 수소가 8.88배 더 위험하다고 할 수 있다.