1. 개요
층(Sheaf)은 열린 집합내 위상공간적 대상에서 그것의 덮개 공간의 사상과 범주를 설명하기 위한 것이다.2. 준층
준층(presheaf)이라는 것은 각 공간에서 포함관계가 제대로 맞다면 별로 복잡한 것은 아니다. [math(\cal C)]를 데카르트 곱(cartesian product)이 있는 아무 범주[1]라고 생각하면, [math(X)]의 각 열린집합(open set)마다 [math(\cal C)]의 대상을 하나씩 준 것에 불과하다.2.1. 정의
위상공간(topological space) [math(X)]에 대해서 함자(functor) [math( {\cal F}:{\rm Open}(X)^{{\rm op}}\to {\cal C})]를 [math(X)]의 준층(presheaf)라고 하자. 여기에서 [math({\rm Open}(X))]는 대상(object)을 [math(X)]의 열린 집합(open set)으로, 사상을 [math(\subseteq)]로 가지는 범주(Category)라고 하자. 그러면 이는 [math(U\times_X V=U\cap V)]가 성립한다. 여기서 [math(\rm op)]를 뺀다면 이를 준공층(precosheaf)라고 한다.2.2. 예시
준층의 예를 들면 [math(X=\mathbb{R})]라고 할 때 [math({\cal F}(U)=\{\text{Ring of bounded functions on }U\})]라고 하자. 그렇다면 [math(U\subseteq V)]라면 [math({\cal F}(V)\subseteq {\cal F}(U))]가 되므로 이는 준층이 된다.3. 층
열린집합(open set)의 연산대로 거기에 딸린 대상들도 거기에 맞춰서 행동하도록 만들고 싶다면 [math(U\cap V=\varnothing)]이라고 두자. 만약 이렇게 [math({\cal F}(U \cup V)={\cal F}(U)\times {\cal F}(V))] 직관적으로 [math(X=\mathbb{R})]이라고 한다면 [math(U\cup V)] 위의 함수들은 [math(U)] 위의 함수들과 [math(V)] 위의 함수들로 분리되는 걸 직관적으로 알 수 있다.이때 [math(X)]의 덮개 공간(covering space) [math(\{U_i\})]를 생각해보면, [math({\cal F}(X))]의 정보는 [math({\cal F}(U_i))]들의 정보에 의해서 결정되어야 한다.
아래와 같이 두가지 공리를 만족하는 [math({\cal F})]를 층이라고 하자. 그리고 두 공리를 모아서 국소-전체 양립성(local-global compatibility)라고 한다. 그러니까 층은 국소적 특성이 전체적 특성을 결정하는 무언가다.
3.1. 공리 1
[math(\rho_{U_i\to X}(f)=f|_{U_i})]를 [math(U_i\to X)]에 대응되는 사상 [math({\cal F}(X)\to {\cal F}(U_i))]라고 하면 [math(f\in {\cal F}(X))]가 [math(0)]일 필요충분조건은 [math(f|_{U_i}\in {\cal F}(U_i)=0)]인 것이다.3.2. 공리 2
[math(f_i\in {\cal F}(U_i))]들이 있을 때 [math(f_i|_{U_i\cap U_j}=f_j|_{U_i\cap U_j})]라면 적당한 [math(f\in {\cal F}(X))]가 있어서 [math(f|_{U_i}=f_i)]가 된다. 또 공리 2의 [math(f)]는 공리 1에 의해서 유일성이 보장된다.4. 층화
그렇다면 준층으로 층을 만들 수 있을까? 준층은 국소적 특성, 전체적 특성 모두 가지는데, 문제는 전체적 특성과 국소적 특성이 완전히 따로 논다는 것이다. 그래서 쓸데없는 전체적 특성을 깔끔히 버리고 국소적 특성으로 전체적 특성을 다시 만드는 것이다. 이런 작업을 층화(sheafification)라고 부른다. 우리는 다음과 같은 표기를 만들자.표기 준층 사이의 사상, 즉 자연 변환(natural transformation), [math({\cal F}\to {\cal G})] 있다고 하자. 그렇다면 이것이 국소성의 동형사상이라는 것은 적당한 [math(X)]의 덮개(covering) [math(\{U_i\})]가 있어서 각 [math(i)]마다 [math(V\subseteq U_i)]가 있다면 이걸로 귀납(induce)되는 [math({\cal F}(V)\to {\cal G}(V))]가 동형사상이라는 것이다.
이제 [math(X)]의 모든 준층들의 범주를 [math({\rm PSh}_{{\cal C}}(X))]라고 하자. 여기에서 사상은 자연 변환이다. 그렇다면 모든 국소성의 동형사상들의 류(class)에 대해서 이 범주를 국소화한 것을 바로 층들의 범주(category of sheaves)라고 하고 [math({\rm Sh}_{{\cal C}}(X))]라고 쓴다. (여기서 어떤 범주를 그것의 어떤 사상들의 류에 대해 국소화한다는 것은, 그 범주에 이 사상들의 역을 추가하여 이들을 동형사상들로 만드는 것이다.) 그리고 이것은 그냥 층들을 모은 것들의 범주와 동치이다.
여기에서 집합론적 문제(set-theoretic issue)가 발생하는데, 바로 국소성의 동형사상이 집합이 아니라면 층들의 범주는 국소적으로 작은 범주가 될 수 없고 이는 많이 심각한 문제다. 이를 우리는 [math(\cal C)]를 언제나 작다고 가정하고 도달 불가능한 기수(inaccessible cardinal)의 존재를 가정하는 것으로 해결할 것이다. 도달 불가능한 기수의 존재성이 ZFC로 증명될 수 있다면 이 기수에 대한 폰 노이만 전체(Von Neumann universe)를 ZFC의 모델로 만드므로 ZFC가 일치하게 만들고 이는 불완전성 정리때문에 저 기수의 존재성은 ZFC와 독립일 수밖에 없다. 따라서 이 기수의 존재성을 가정하는 것이 껄끄러울 수 있는데, ZFC에다가 저 기수의 존재성을 가정한 새로운 공리계를 받아들인다. 그러면 모든 범주의 대상들을 모은 것의 크기가 도달 불가능한 기수보다 작다는 가정으로 진행할수 있다.
그렇다면 당연히 [math({\rm Sh}_{{\cal C}}(X)\longrightarrow {\rm PSh}_{{\cal C}}(X))]라는 함자가 있을 것이다. 그럼 이건 왼쪽으로 수반(left adjoint)이 존재하고 이를 층화라고 부른다. 여기선 R. Hartshorne, GTM Algebraic Geometry에 제시된 표기를 따라서 [math({\cal F}^a)]라고 썻다.
4.1. 예시
복소해석적인 예시로 층화의 중요성을 좀더 자세히 설명한다면, [math({\rm exp})]를 복소지수함수라고 하고 [math({\cal O})]를 아래와 같은 정칙 함수(holomorphic function)로 정의하면,[math(\displaystyle \begin{aligned} {\cal A}(U)=\{e^f|f:U\to \mathbb{C}\text{ is a holomorphic function }\} \end{aligned})] |
[math(\displaystyle \begin{aligned} 0\to 2\pi i \mathbb{Z}\longrightarrow {\cal O}\longrightarrow_{{\rm exp}}{\cal A}\to 0 \end{aligned})] |
[math(\displaystyle \begin{aligned} {\cal A}^a(U)={\cal O}^*(U)=\{f:U\to \mathbb{C}|f\text{ is a nonvanishing function }\} \end{aligned})] |
[math(\displaystyle \begin{aligned} 0\to 2\pi i \mathbb{Z}\longrightarrow {\cal O}\longrightarrow {\cal O}^*\to 0 \end{aligned})] |
[math(\displaystyle \begin{aligned} 0\to 2\pi i \mathbb{Z}\longrightarrow {\cal O}(\mathbb{C}\setminus \{0\})\longrightarrow {\cal O}^*({\cal C}\setminus \{0\})\to 0 \end{aligned})] |
[math(\displaystyle \begin{aligned} \Gamma(X,-):{\rm Sh}_{{\cal C}}(X)\to {\cal C}\\ \Gamma(X,{\cal F})={\cal F}(X) \end{aligned})] |
연속함수 [math(f:X\to Y)]가 있고 [math({\cal F})]가 [math(X)]의 층, [math({\cal G})]가 [math(Y)]의 층일 때 다음 둘을 정의하자.
[math(\displaystyle \begin{aligned} f_*{\cal F}(U)={\cal F}(f^{-1}(U))(U\subseteq Y), f_*{\cal F}\in {\rm Ob}({\rm Sh}_{{\cal C}}(Y))\\ f^*{\cal G}(U)=\lim_{V\subseteq f(U)}{\cal G}(V)(U\subseteq X), f^*{\cal G}\in {\rm Ob}({\rm Sh}_{{\cal C}}(X)) \end{aligned})] |
[math(\displaystyle \begin{aligned} f_*:{\rm Sh}_{{\cal C}}(X)\to {\rm Sh}_{{\cal C}}(Y)\\ f^*:{\rm Sh}_{{\cal C}}(Y)\to {\rm Sh}_{{\cal C}}(X) \end{aligned})] |
5. 그로덴티크 위상과 층
이제 그로덴티크 위상(Grothendieck topology)을 설명하겠다.[2] [math(\cal C)]이 유한극한을 가지는 범주고, [math(X\in {\rm ob}({\cal C}))]라고 하자. 그러면 각 [math(X)]들에 대한 덮개의 공리계를 다음과 같이 설정하자.- [math(\{Y\to X\})]와 같은 동형사상은 덮개이다.
- [math(\{U_i\to X\})]가 덮개이고 [math(Y\to X)]가 있다면 [math(U_i\times_X Y\to Y)] 역시 덮개이다.
- [math(\{U_i\to X\})]가 덮개이고 [math(\{U_{ij}\to U_i\})]도 각 [math(i)]에 대해서 덮개라면 [math(\{U_{ij}\to X\})]도 덮개이다.
그렇다면, [math(({\cal C},J))]가 site라면 여기 위의 층을 정의할 수 있다. [math({\cal F}:{\cal C}^{{\rm op}}\to {\rm D})]라는 함자가 있다면 이를 [math(({\cal C},J))]의 준층이라고 하고 이것이 층이란 것은 다음 두 가지를 만족할 때를 말한다.
- 덮개 [math(\{U_i\to U\})]가 있고 [math(f\in {\cal F}(U))]가 모든 [math(i)]에 대해서 [math(f|_{U_i}=0)]일 때 [math(f=0)]이다.
- 덮개 [math(\{U_i\to U\})]에 대해서 [math(f_i\in {\cal F}(U_i))]들이 [math(f_i|_{U_i\times_X U_j}=f_j|_{U_i\times_X U_j})]를 만족한다면 적당한 [math(f\in {\cal F}(U))]가 있어서 [math(f|_{U_i}=f_i)]가 된다.
6. 스킴으로 설명되는 층의 성질
우리는 국소적으로 자유로운 층(locally free sheaf)를 정의할 텐데 [math( X)]가 스킴(scheme)이고 [math({\cal F})]가 그 위의 결맞음 층(coherent sheaf)라고 하자. 그러면 [math({\cal F})]가 국소적으로 자유로운 층이라는 건 모든 열린 부분스킴(open subscheme) [math(U\subseteq X)]에 대해서 [math( {\cal F}(U))]가 자유 [math({\cal O}_X(U))]-모듈인 것이다. 그리고 적당한 열린 덮개이 있어서 거기에서 rank가 모두 1이면 그 층을 가역층(invertible sheaf)이라고 부른다.가역층(invertible sheaf)이란 말은 정말로 가역일수 있다는 뜻으로 나왔다. 층의 텐서곱은 자명하게 정의할 수 있고, [math({\cal L})]가 [math(X)] 위의 가역층이라고 하자. 그러면 적당한 열린 부분스킴들의 덮개공간 [math(\{U_i\})]이 있어서 [math({\cal L}(U_i)=(f_i))]가 되는데, 간단히 [math({\cal L}^{-1}(U_i)=\left(\frac{1}{f_i}\right))]를 준비하자. 이렇게 가역스킴들은 텐서곱으로 군을 이루며 이를 피카르드 군(Picard group)이라고 하고 [math({\rm Pic}(X))]라고 쓴다.
먼저 국소적으로 자유로운 스킴이 아핀 스킴에서 무엇에 대응되는지 생각해보자. [math(X={\rm Spec}\,A)]라고 한 뒤에 여기 위의 국소적으로 자유로운 스킴 [math({\cal F})]을 생각하자. 그렇다면 [math(M=\Gamma(X,{\cal F}))]를 생각하는데 국소적으로 자유롭게란 조건으로 모든 [math(\mathfrak{p})]에 대해서 [math(M_{\mathfrak{p}})]는 자유롭고 따라서 적당한 free module [math(F)] over [math(A)]와 morphism [math(F\to M)]가 있다고 해보자. 그러면 이것은 [math(\mathfrak{p})]로 국소화하면 분리하고 우리는 따라서 [math(F\to M)]을 합성하는
[math(\displaystyle \begin{aligned} {\rm Hom}(M,F)\to {\rm Hom}(M,M) \end{aligned})] |
[math(\displaystyle \begin{aligned} A_{\mathfrak{p}}^n=M\oplus \mathfrak{m}_{\mathfrak{p}}A_{\mathfrak{p}}^n \end{aligned})] |
[math(\displaystyle \begin{aligned} \{\text{locally free sheaves over }X={\rm Spec}\,A\}\longleftrightarrow \{\text{projective modules over }A\} \end{aligned})] |
[math(\displaystyle \begin{aligned} {\rm Pic}({\rm Spec}\,{\cal O}_K)={\rm Cl}_K \end{aligned})] |
이제 우리는 사영 선 [math(\mathbb{P}^1_{\mathbb{C}})]위에 있는 구조층의 전체 단면 함자를 생각하자. 그러면 무한대지점을 빼고 생각하면 전체 단면 함자에 들 수 있는 함자들이 [math(\mathbb{C}[x])]가 되는데, 이것들은 상수 빼고는 모두 무한대 지점에서 제대로 정의되지 않으므로 아래와 같이 된다.
[math(\displaystyle \begin{aligned} \Gamma(\mathbb{P}_{\mathbb{C}}^{1},{\cal O}_{\mathbb{P}_{\mathbb{C}}^{1}})=\mathbb{C} \end{aligned})] |
[math(\displaystyle \begin{aligned} \Gamma(\mathbb{P}^1_{\mathbb{C}},{\cal O}(1))=\{ax+by|a,b\in \mathbb{C}\} \end{aligned})] |
세르 뒤틀림 층을 이번엔 [math(\mathbb{P}^n_{\mathbb{C}})]에 대해서 구체적으로 쓰면 다음과 같이 된다.
[math(\displaystyle \begin{aligned} {\cal O}(m)(U)=\left\{\frac{f}{g}|f,g\in \mathbb{C}[x_0,\cdots,x_n],f,g\text{ are homogenous and }{\rm deg}(f)={\rm deg}(g)+m,g(a_0,\cdots,a_n)\ne 0 \text{ for }(a_0,\cdots,a_n)\in \mathbb{P}^n_{\mathbb{C}}\right\} \end{aligned})] |
[math(\displaystyle \begin{aligned} {\rm dim}\,\Gamma(\mathbb{P}^n_{\mathbb{C}},{\cal O}(m))={{m+n}\choose{n}} \end{aligned})] |
7. 참고문헌
- R. Hartshorne, Algebraic Geometry, p 60-65