최근 수정 시각 : 2022-09-25 06:13:01
1. 개요2. 정의3. 성질3.1. 연속변형류(Homotopy class)3.2. 연속변형 유형(Homotopy type) 4. 관련 개념들4.1. 경로 연속변형(Path homotopy)4.2. 부분공간을 고정한 연속변형(Homotopy relative to subspace)4.3. 변형수축(Deformation retract)4.4. 동위(Isotopy)
Homotopy · 連續變形(性)
연속변형성 혹은 연속변형은 대수적 위상수학의 연구 주제 중 하나로 특정 위상공간에 주어진 두 연속함수 사이의 연속적인 변화를 주는 함수, 혹은 그 성질을 지칭하는 용어이다.
[ 정의 ] 연속변형성(Homotopy) 위상 공간 [math(X, Y)]와 연속함수 [math(f, g: X \rightarrow Y)]가 주어져 있다고 하자. 이 때 함수 [math(H: X \times [0, 1] \rightarrow Y)]가 존재하여 다음 성질들을 만족한다면, 두 연속함수 [math(f, g)]가 [math(H)]에 의해 연속변형적(homotopic by [math(H)])이라 정의한다.- 함수 [math(H)]는 연속함수이다.
- [math(\forall x \in X, \ \ H(x, t) = \begin{cases} f(x), & \textsf{if }t = 0 \\ g(x), & \textsf{if }t = 1 \end{cases})]
이 때, 연속함수 [math(H: X \times [0, 1] \rightarrow Y)]를 함수 [math(f, g)] 사이의 연속변형(Homotopy)이라 하고, [math(f \simeq_H g)]라 쓴다. |
구간 [math(I = [0, 1])]의 원소를 시간으로 보면, [math(t \in I)]가 흐름에 따라 함수 [math(h_t: x \mapsto H(x, t))]가 결정된다고 볼 수 있다. 연속변형이라는 것은 이 함수의 모임 [math(\left\{ h_t \right\} _{t \in I})]가 [math(f = h_0)]부터 [math(g = h_1)]까지 연속성을 유지하면서 옮겨가는 것이라고 이해할 수 있다.
3.1. 연속변형류(Homotopy class)
[ 명제 ] 위상 공간 [math(X, Y)] 사이의 연속함수들의 집합 [math(\mathcal C(X, Y))]에 관계 [math(\sim)]를- [math(f \sim g \ \ \Leftrightarrow \ \ f, g)] 가 연속변형적 [math(\ \ \Leftrightarrow \ \ f \simeq g)]
으로 주면, [math(\sim)]은 [math(\mathcal C(X, Y))] 위의 동치관계.
- [ 증명 ]
- [math(f, g, h \in \mathcal C(X, Y))]라 하자.
- [math(f \sim f)] : [math(H(x, t) = f(x))]라 정의하면 된다.
- [math(f \simeq_H g \ \Rightarrow \ g \sim f)] : [math(H'(x, t) = H(x, 1 - t))]라 정의하면 된다.
- [math(f \simeq_{H_1} g, g \simeq_{H_2} h \ \Rightarrow \ f \sim g)] : [math(H_3(x, t) = \begin{cases} H_1(x, 2t), & \textsf{if }0 \leq t \leq \dfrac 12 \\ H_2(x, 2t - 1), & \textsf{if }\dfrac 12 \leq t \leq 1 \end{cases})]라 정의하면 된다.□
|
[ 정의 ] 연속변형류(Homotopy class) 위 사실로부터 얻어지는 상집합 [math(\mathcal C(X, Y) / \sim)]에 대하여, 각 함수 [math(f \in \mathcal C(X, Y))]는 동치류 [math([f] \in \mathcal C(X, Y) / \sim)] 를 가진다. 이 [math([f])]를 [math(f)]의 연속변형류(Homotopy class)라고 정의한다. |
정의에 따르면, [math([f] = [g] \Leftrightarrow f \simeq g)] 이다.
3.2. 연속변형 유형(Homotopy type)
[ 정의 ] 위상 공간 [math(X, Y)] 사이의 연속함수 [math(f: X \to Y)]에 대하여, 다음을 만족하는 연속함수 [math(g: Y \to X)]가 존재할 때 [math(f)]를 연속변형 동치(Homotopy equivalence), [math(g)]를 [math(f)]의 연속변형 역원(Homotopy inverse)라 한다.- [math([fg] = [\text{id}_Y], [gf] = [\text{id}_X])]
이 때, 두 공간 [math(X, Y)]는 서로 연속변형 동치(Homotopy equivalent)라 부른다. 서로 같은 연속변형 유형(Homotopy type)을 가진다고 표현하기도 한다. |
4. 관련 개념들
4.1. 경로 연속변형(Path homotopy)
[ 정의 ] 경로 연속변형(Path homotopy) 위상 공간 [math(X)]와 경로 [math(f, g: [0, 1] \rightarrow X)]가 주어져 있다고 하자. 이 때 함수 [math(H: [0, 1] \times [0, 1] \rightarrow X)]가 존재하여 다음 성질들을 만족한다면, [math(H: [0, 1] \times [0, 1] \rightarrow Y)]를 경로 [math(f, g)] 사이의 경로 연속변형(Path homotopy)이라 부른다.- 함수 [math(H)]는 연속함수이다.
- [math(\forall s \in [0, 1], \ \ H(s, t) = \begin{cases} f(s), & \textsf{if }t = 0 \\ g(s), & \textsf{if }t = 1 \end{cases})]
|
위에서 정의한 연속변형의 경로 버전. 함수의 정의역이 일반 공간이 아닌 구간 [math([0, 1])]로 바뀐 것으로, 당연히 연속변형의 일종이다. 따로 정의할 필요가 있을까 싶겠지만, 대수적 위상수학의 기본군(Fundamental group)을 다룰 때는 경로 연속변형만을 취급하는 일이 많다.
4.2. 부분공간을 고정한 연속변형(Homotopy relative to subspace)
[ 정의 ] [math(A)]를 고정한 연속변형(Homotopy relative to [math(A)]) 위상 공간 [math(X, Y)], 부분 공간 [math(A \subset X)]와 연속함수 [math(f, g: X \rightarrow Y)], 연속변형 [math(H: X \times [0, 1] \rightarrow Y)]가 주어져 있다고 하자. 만일 [math(H)]가 다음 조건을 만족하면, 연속변형 [math(H)]를 [math(A)]를 고정한 연속변형(Homotopy relative to [math(A)])이라 한다.- [math(\forall x \in A, \ \ H(x, t) = f(x) = g(x))]
이 때 [math(f \simeq_H g \textsf{ rel }A)]나 [math(f \simeq g \textsf{ rel }A)]로 나타낸다. |
4.3. 변형수축(Deformation retract)
[ 정의 ] 변형수축(Deformation retract) 위상 공간 [math(X)]와 부분 공간 [math(A \subset X)], 연속함수 [math(H: X \times [0, 1] \rightarrow X)]가 주어져 있다고 하자. 만일 [math(H)]가 다음 조건을 만족하면, [math(A)]를 [math(X)]의 변형수축(Deformation retract of [math(X)])라 한다.- [math(\forall x \in X, \ \ H(x, 0) = x = \text{id}_X(x))]
- [math(\forall x \in X, \ \ H(x, 1) \in A)]
- [math(\forall a \in A \ \forall t \in [0, 1], \ \ H(a, t) = a = \text{id}_A(a))]
|
어떤 위상 공간이 그 부분공간으로 연속적 수축이 됨을 나타내는 용어. 단, 교재별로 세 번째 조건을 [math(H(a, t) \in A)]로 약화시킨 것을 정의로 삼기도 한다. 이렇게 두 공간 사이의 변형수축이 존재하면, 두 공간의 기본군이 같아지며 이를 이용하여 기본군을 계산하는 경우가 많다.
4.4. 동위(Isotopy)
[ 정의 ] 동위(Isotopy) 위상 공간 [math(X, Y)]와 매장(Embedding) [math(f, g: X \rightarrow Y)], 연속변형 [math(H: X \times [0, 1] \rightarrow Y)]가 주어져 있다고 하자. 만일 [math(H)]가 다음 조건을 만족하면, 연속변형 [math(H)]를 동위(Isotopy)라고 한다.- [math(\forall t \in [0, 1], \ \ h_t(x) = H(x, t))]로 정의된 [math(h_t: X \rightarrow Y)]도 매장이다.
|