1. 개요
군이 단일한 생성원을 가질 때, 즉 [math(a\in G)]가 존재하여 [math(G=\left\langle a\right\rangle)]일 때,순환군(cyclic group) 이라 한다.
- [math(G)]가 순환군이면, [math(n\in \mathbb{Z})]가 존재하여 [math(G\cong \mathbb{Z}/n\mathbb{Z})]이다.[1]
2. 순환군
2.1. 치환 알고리즘
[math(\sigma_{123} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix})]의 2행표기법에서 1행 표기법으로는 [math( \left( 123 \right) )]으로 표기할수 있다.이것을 순열 생성 알고리즘으로 돌리면
(123) , (132) ,(231) ,(312),(213),(321)로 6개 나온다. 이걸 다시 2행표기법으로 바꾸면
[math( \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix})],[math( \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix})],[math( \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix})],[math( \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix})],[math( \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix})],[math( \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix})]을 얻을수 있다.
2.2. 순열 합성함수의 예
P={1,2,3}이고 집합P 에서 6개의 치환군(순열군,S,P,)은 다음과 같이 대칭성을 갖는 대칭군(S,3,)임을 조사할수 있다. (123) (231) (312) | (321) (132) (213) |
순열의 홀짝성(parity)에서 우(짝)순열과 우(짝)순열의 합성은 우순열이고 기(홀)순열과 기(홀)순열의 합성은 우순열이므로
[math( \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} )]
[math( \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} )]
[math( \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} )]
[math( \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} )]
[math( \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} )]
[math( \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} )]
위와같이 순환군의 첫번째 합성에서 대칭군 S,3, 의 교대군(alternating group) S,A, 를 조사할수 있다.
S,A, = [math( \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix})],[math( \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix})],[math( \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix})]
3. S,3, 순환군
P={1,2,3}이고 집합P 에서 6개의 치환군(순열군,S,P)은 다음과 같이 대칭군(S,3,,,)을 조사할수 있다.(123) , (132) ,(231) ,(312),(213),(321)
이걸 다시 2행표기법으로 바꾸면
[math( \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix})],[math( \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix})],[math( \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix})],[math( \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix})],[math( \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix})],[math( \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix})]이다.
3.1. S,3, 순환군의 합성
[math( \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} )][math( \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} )] , [math( \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} )]
[math( \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} )] , [math( \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} )] , [math( \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} )]
[math( \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} )] , [math( \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} )] , [math( \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} )]
[math( \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} )] , [math( \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} )]
[math( \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} )] , [math( \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} )]
순환군들은 다시 자기자신으로 돌아오고 순환한다.
3.2. S,3, 순환군들
위의 S,3, 순환군의 합성으로 부터 [math( \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} )] 은 항등원임을 조사할수 있다. [2]대칭군 S,3, | 순환군 | 번호매김(numbering) |
[math( \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} )] | [math( \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} )] | [math(\mathrm{I})] |
[math( \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} )] | [math( \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} , \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} )] | [math(\mathrm{II})] |
[math( \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} )] | [math( \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix})],[math( \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix})],[math( \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix})] | [math(\mathrm{III})] |
[math( \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} )] | [math( \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix})],[math( \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix})],[math( \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix})] | [math(\mathrm{IV})] |
[math( \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} )] | [math( \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} , \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} )] | [math(\mathrm{V})] |
[math( \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} )] | [math( \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} , \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} )] | [math(\mathrm{VI})] |
이어서
따라서 위수 [math(\lvert 3\rvert)]에서는 교대군이 일부 순환군들과 일치한다는 것을 조사할수 있다.
4. 관련 문서
[1] [math(G=\left\langle a\right\rangle)]에 대해, [math(\phi\ :\mathbb{Z}\rightarrow G)]를 [math(\phi\left( n\right)=a^{n})]로 정의하고 제1 동형정리를 적용하여 바로 얻는다.[2] \[참고 \](조선대학교 교육대학원)위수 60인 비아벨 단순군의 유일성 ,신 주 한https://oak.chosun.ac.kr/bitstream/2020.oak/19132/2/%EC%9C%84%EC%88%98%2060%EC%9D%B8%20%EB%B9%84%EC%95%84%EB%B2%A8%20%EB%8B%A8%EC%88%9C%EA%B5%B0%EC%9D%98%20%EC%9C%A0%EC%9D%BC%EC%84%B1.pdf