#!if 넘어옴1 != null
'''IVT'''{{{#!if 넘어옴2 != null
, ''''''}}}{{{#!if 넘어옴3 != null
, ''''''}}}{{{#!if 넘어옴4 != null
, ''''''}}}{{{#!if 넘어옴5 != null
, ''''''}}}{{{#!if 넘어옴6 != null
, ''''''}}}{{{#!if 넘어옴7 != null
, ''''''}}}{{{#!if 넘어옴8 != null
, ''''''}}}{{{#!if 넘어옴9 != null
, ''''''}}}{{{#!if 넘어옴10 != null
, ''''''}}}은(는) 여기로 연결됩니다.
#!if 설명 == null && 리스트 == null
{{{#!if 설명1 == null
다른 뜻에 대한 내용은 아래 문서를}}}{{{#!if 설명1 != null
{{{#!html 현대자동차그룹에서 사용하는 무단변속기 IVT}}}에 대한 내용은 [[CVT]] 문서{{{#!if (문단1 == null) == (앵커1 == null)
를}}}{{{#!if 문단1 != null & 앵커1 == null
의 [[CVT#s-|]]번 문단을}}}{{{#!if 문단1 == null & 앵커1 != null
의 [[CVT#|]] 부분을}}}}}}{{{#!if 설명2 != null
, {{{#!html }}}에 대한 내용은 [[]] 문서{{{#!if (문단2 == null) == (앵커2 == null)
를}}}{{{#!if 문단2 != null & 앵커2 == null
의 [[#s-|]]번 문단을}}}{{{#!if 문단2 == null & 앵커2 != null
의 [[#|]] 부분을}}}}}}{{{#!if 설명3 != null
, {{{#!html }}}에 대한 내용은 [[]] 문서{{{#!if (문단3 == null) == (앵커3 == null)
를}}}{{{#!if 문단3 != null & 앵커3 == null
의 [[#s-|]]번 문단을}}}{{{#!if 문단3 == null & 앵커3 != null
의 [[#|]] 부분을}}}}}}{{{#!if 설명4 != null
, {{{#!html }}}에 대한 내용은 [[]] 문서{{{#!if (문단4 == null) == (앵커4 == null)
를}}}{{{#!if 문단4 != null & 앵커4 == null
의 [[#s-|]]번 문단을}}}{{{#!if 문단4 == null & 앵커4 != null
의 [[#|]] 부분을}}}}}}{{{#!if 설명5 != null
, {{{#!html }}}에 대한 내용은 [[]] 문서{{{#!if (문단5 == null) == (앵커5 == null)
를}}}{{{#!if 문단5 != null & 앵커5 == null
의 [[#s-|]]번 문단을}}}{{{#!if 문단5 == null & 앵커5 != null
의 [[#|]] 부분을}}}}}}{{{#!if 설명6 != null
, {{{#!html }}}에 대한 내용은 [[]] 문서{{{#!if (문단6 == null) == (앵커6 == null)
를}}}{{{#!if 문단6 != null & 앵커6 == null
의 [[#s-|]]번 문단을}}}{{{#!if 문단6 == null & 앵커6 != null
의 [[#|]] 부분을}}}}}}{{{#!if 설명7 != null
, {{{#!html }}}에 대한 내용은 [[]] 문서{{{#!if (문단7 == null) == (앵커7 == null)
를}}}{{{#!if 문단7 != null & 앵커7 == null
의 [[#s-|]]번 문단을}}}{{{#!if 문단7 == null & 앵커7 != null
의 [[#|]] 부분을}}}}}}{{{#!if 설명8 != null
, {{{#!html }}}에 대한 내용은 [[]] 문서{{{#!if (문단8 == null) == (앵커8 == null)
를}}}{{{#!if 문단8 != null & 앵커8 == null
의 [[#s-|]]번 문단을}}}{{{#!if 문단8 == null & 앵커8 != null
의 [[#|]] 부분을}}}}}}{{{#!if 설명9 != null
, {{{#!html }}}에 대한 내용은 [[]] 문서{{{#!if (문단9 == null) == (앵커9 == null)
를}}}{{{#!if 문단9 != null & 앵커9 == null
의 [[#s-|]]번 문단을}}}{{{#!if 문단9 == null & 앵커9 != null
의 [[#|]] 부분을}}}}}}{{{#!if 설명10 != null
, {{{#!html }}}에 대한 내용은 [[]] 문서{{{#!if (문단10 == null) == (앵커10 == null)
를}}}{{{#!if 문단10 != null & 앵커10 == null
의 [[#s-|]]번 문단을}}}{{{#!if 문단10 == null & 앵커10 != null
의 [[#|]] 부분을}}}}}}
#!if 설명 == null
{{{#!if 리스트 != null
다른 뜻에 대한 내용은 아래 문서를}}} 참고하십시오.
#!if 리스트 != null
{{{#!if 문서명1 != null
* {{{#!if 설명1 != null
현대자동차그룹에서 사용하는 무단변속기 IVT: }}}[[CVT]] {{{#!if 문단1 != null & 앵커1 == null
문서의 [[CVT#s-|]]번 문단}}}{{{#!if 문단1 == null & 앵커1 != null
문서의 [[CVT#|]] 부분}}}}}}{{{#!if 문서명2 != null
* {{{#!if 설명2 != null
: }}}[[]] {{{#!if 문단2 != null & 앵커2 == null
문서의 [[#s-|]]번 문단}}}{{{#!if 문단2 == null & 앵커2 != null
문서의 [[#|]] 부분}}}}}}{{{#!if 문서명3 != null
* {{{#!if 설명3 != null
: }}}[[]] {{{#!if 문단3 != null & 앵커3 == null
문서의 [[#s-|]]번 문단}}}{{{#!if 문단3 == null & 앵커3 != null
문서의 [[#|]] 부분}}}}}}{{{#!if 문서명4 != null
* {{{#!if 설명4 != null
: }}}[[]] {{{#!if 문단4 != null & 앵커4 == null
문서의 [[#s-|]]번 문단}}}{{{#!if 문단4 == null & 앵커4 != null
문서의 [[#|]] 부분}}}}}}{{{#!if 문서명5 != null
* {{{#!if 설명5 != null
: }}}[[]] {{{#!if 문단5 != null & 앵커5 == null
문서의 [[#s-|]]번 문단}}}{{{#!if 문단5 == null & 앵커5 != null
문서의 [[#|]] 부분}}}}}}{{{#!if 문서명6 != null
* {{{#!if 설명6 != null
: }}}[[]] {{{#!if 문단6 != null & 앵커6 == null
문서의 [[#s-|]]번 문단}}}{{{#!if 문단6 == null & 앵커6 != null
문서의 [[#|]] 부분}}}}}}{{{#!if 문서명7 != null
* {{{#!if 설명7 != null
: }}}[[]] {{{#!if 문단7 != null & 앵커7 == null
문서의 [[#s-|]]번 문단}}}{{{#!if 문단7 == null & 앵커7 != null
문서의 [[#|]] 부분}}}}}}{{{#!if 문서명8 != null
* {{{#!if 설명8 != null
: }}}[[]] {{{#!if 문단8 != null & 앵커8 == null
문서의 [[#s-|]]번 문단}}}{{{#!if 문단8 == null & 앵커8 != null
문서의 [[#|]] 부분}}}}}}{{{#!if 문서명9 != null
* {{{#!if 설명9 != null
: }}}[[]] {{{#!if 문단9 != null & 앵커9 == null
문서의 [[#s-|]]번 문단}}}{{{#!if 문단9 == null & 앵커9 != null
문서의 [[#|]] 부분}}}}}}{{{#!if 문서명10 != null
* {{{#!if 설명10 != null
: }}}[[]] {{{#!if 문단10 != null & 앵커10 == null
문서의 [[#s-|]]번 문단}}}{{{#!if 문단10 == null & 앵커10 != null
문서의 [[#|]] 부분}}}}}}
1. 개요
中間値 定理 | intermediate value theorem해석학의 한 이론. 구간에서 연속인 함수에 대해서 구간에 대한 함수의 상도 구간으로 나온다는 정리이다.
1.1. 명칭 개정 문제
- 대한수학회
- '정리(thm)' 관련 용어는 '중간값 정리' 또는 '중간값의 정리'로 쓴다. '사잇값(의) 정리', '사이값(의) 정리'는 미인정한다.
- '중간값(intermediate value)' 관련 용어는 사잇값도 인정한다.
- 중등 교육과정
- '중간값의 정리' - 2007 개정 교육과정까지
- '사이값 정리' - 2009 개정 교육과정
- '사잇값 정리' - 2009 개정 교육과정 최종수정본 이후. 국어 문법이 개정되어 사이시옷을 써야 하기 때문이다.
2. 증명
함수 [math(f)]가 [math(\left[a,b\right])]에서 연속이고 [math(k)]가 [math(f\left(a\right))]와 [math(f\left(b\right))]사이의 임의의 값이라 하자. 당연히 [math(f\left(a\right)\neq f\left(b\right))]임을 가정한다. [math(f\left(a\right)<k<f\left(b\right))]와 [math(f\left(b\right)<k<f\left(a\right))]의 두 가지 경우가 있는데 전자를 가정하며, 후자의 경우에는 [math(g=-f)]로 정하고 [math(g)]에 대해 정리를 적용하여 증명할 수 있다.[math(A=\left\{x\in\left[a,b\right]|f\left(x\right)<k\right\})]라고 하자. 이때 [math(c=\sup A)]로 정의한다.[1] [math(f)]가 [math(\left[a,b\right])]에서 연속이므로, 적당한 [math(\delta _1>0)]가 존재하여 [math(\forall x\in\left[a,a+\delta _1\right) : f\left(x\right)<k)]이고, 적당한 [math(\delta_2>0)]가 존재하여 [math(\forall x\in\left(b-\delta _2,b\right]: f\left(x\right)>k)]이다.[2] 따라서 [math(a<c<b)]이다. 또한 [math(f\left(c\right)<k)]이면 f의 연속성에 의해 [math(f\left(c+\alpha\right)<k)]인 [math(\alpha >0 )]가 존재하게 되어 모순이므로, [math(f\left(c\right)\geq k)]이다.
한편 상한(supremum)의 정의에 의해 임의의 [math(\epsilon >0)]에 대하여 [math(c-\epsilon<x\leq c )]인 [math(x\in A)]가 존재한다. 그러면 f의 연속성에 의해 임의의 [math(\delta >0)]에 대하여 [math(f\left(c\right)<f\left(x\right)+\delta)]인 [math(x\in A)]가 존재하게 된다. 여기서 [math(f\left(x\right)<k)]이므로 [math(f\left(c\right)<k+\delta)]가 성립한다. 이는 곧 [math(f\left(c\right)\leq k)]라는 뜻이다. 따라서 [math(f\left(c\right)=k)]이다.
2.1. 다른 증명
축소구간정리를 이용해서 증명을 할 수 있다.함수 [math(f)]가 [math(\left[a, b\right])]에서 연속이고 [math(k)]가 [math(f(a))]와 [math(f(b))] 사이의 값이라고 하자. 역시 축소구간정리와 마찬가지로 여기서는 [math(f(a)< k <f(b))]라고 둔다.
그러면 다음 조건을 만족하는 폐구간열 〈[math(I_{n}=\left[x_{n}, y_{n}\right])]〉을 생각할 수 있다.
각 자연수 [math(n)]에 대하여,
|
그렇다면 이 폐구간열은 축소 폐구간열이 되며, 따라서 축소구간정리에 따라 [math(\displaystyle \bigcap_{n \in \mathbb{N}}I_{n}\neq \emptyset)]이며, 이 구간의 길이. 즉 측도는 계속해서 반으로 줄어드므로 그 극한은 0. 공집합이 아닌데 측도가 0인 집합은 점집합이므로 즉 이 구간열의 무한교집합은 어느 한 점을 가지는 단원소집합이 된다. 그 값을 [math(\displaystyle \bigcap_{n \in \mathbb{N}}I_{n}=\{c\})]라고 하자.
또한, [math(\forall n \in \mathbb{N})]에 대하여 [math(f(x_n)\leq k < f(y_n))]에, [math(a\leq x_n\leq c<y_n\leq b)]이므로 [math(f)]는 [math(\left[a, b\right])]에서 연속이라는 전제에 따라 [math(x=c)]에서 연속이다. 따라서 조임 정리를 사용하면 [math(\displaystyle \lim_{n\to\infty}f(x_n)=f(c)\leq k \leq \lim_{n\to\infty}f(y_n)=f(c))]가 되므로, [math(f(c)=k)]를 만족하는 점 [math(c)]가 존재하게 되며, 또한 [math(f(a)<k<f(b))]이므로 [math(a \neq c, b\neq c)]가 된다. 따라서 [math(f(c)=k)]를 만족하는 점 [math(c)]는 개구간 [math(\left(a, b\right))]에 존재함을 보일 수 있다. 여담으로 위의 축소구간정리를 이용하면 실수의 비가산성을 증명할 수 있으며[3], 이것이 역사상 처음으로 실수가 비가산집합이라는 것을 증명한 증명법에 속한다.
2.2. 다른 증명 2
위상수학의 관점에서 증명을 할 수도 있다. 연결집합을 이용하는 방법인데, 연결집합이란 공집합이 아닌 두 열린 집합으로 쪼갤 수 없는, 즉 분할(separation)을 찾을 수 없는 집합이다. 여기서 열린 집합이란, 열린 구간처럼 경계를 포함하지 않는 집합이며 열린 집합 S와 이 집합의 경계점들의 집합인 경계 [math(Bd\left(S\right))]의 합집합을 [math(S)]의 폐포(closure)라 하고[4] [math(\overline{S})]로 나타낸다. 이제 중간값 정리를 다시 표현하면 다음과 같다.[math(f)]가 연결집합 [math(D)]에서 정의된 연속인 실함수일 때, [math(a,b\in f\left(D\right))]이고 [math(a<c<b)]이면 [math(f\left(p\right)=c)]인 [math(p\in D)]가 존재한다.
이에 대한 증명은 다음과 같다.모든 [math(p\in D)]에 대하여 [math(f\left(p\right)\neq c)]이면 [math(f\left(p\right)>c)] 또는 [math(f\left(p\right)<c)]이다. [math(U=\left\{p\in D:f\left(p\right)>c\right\},V=\left\{p\in D:f\left(p\right)<c\right\})]라 하자. [math(f)]가 연속이므로 [math(U)]와 [math(V)]는 [math(D)]의 열린 집합이다. [math(a,b\in f\left(D\right))]이므로 [math(f\left(p_{1}\right)=a,f\left(p_{2}\right)=b)]인 [math(p_{1},p_{2}\in D)]가 존재한다. 그런데 [math(a=f\left(p_{1}\right)<c<f\left(p_{2}\right)=b)]이므로 [math(p_{1}\in V,p_{2}\in U)]이다. 따라서 [math(V\neq\varnothing,U\neq\varnothing)]이다. 그리고 [math(\bar{U}\cap V=U\cap\bar{V}=\varnothing)]이고 [math(D=U\cup V)]이다. 따라서 [math(D)]는 연결집합이 아니고, 이는 가정에 모순된다. 따라서 어떤 [math(p\in D)]에 대하여 [math(f\left(p\right)=c)]이다. |
그런데 사실 위 증명은 다른 정리의 증명에서 찾을 수 있는 것인데, 다름 아닌 실수 집합의 어떤 부분집합이 연결집합일 필요충분조건은 이 부분집합이 구간(interval)이어야 한다는 것이다는 것의 증명이다. 실수 집합의 구간은 여기에 포함된 임의의 [math(x, y)]에 대하여 [math(x < c < y)]인 임의의 실수 [math(c)] 역시 이 집합에 포함되는 실수 집합의 부분집합으로 정의된다. 여기서 [math([a, b])]가 이 조건을 만족한다는 것을 보일 수 있다.[5] 그러면 연결집합의 연속상(continuous image) 역시 연결집합이라는 성질 때문에 [math(f([a, b]))][6] 역시 연결집합, 곧 구간임을 알 수 있다. 그러면 [math(f(a))]와 [math(f(b))] 사이에 있는 임의의 [math(y \in \mathbb{R})]은 [math(f([a, b]))]에 포함될 것이고 따라서 [math(y = f(c))]인 [math(c \in [a, b])]를 항상 찾을 수 있는 것으로 또다른 방식의 증명을 마칠 수 있다. 즉, 중간값 정리는 본질적으로 연결집합이라는 위상적 성질로부터 비롯된 것이라고 간단하게 증명할 수 있는 것이다.
3. 중간값 정리의 활용
고교과정에서 자주 쓰이는 활용으로는 방정식의 근의 위치를 추정하는 것이다. 만약 [math(f(a)\times f(b)<0)]이고 [math(f)]가 연속이면 [math(\left(a,b\right))]사이에 근을 적어도 하나 가진다. 왜냐하면 0이 [math(f\left(a\right))]와 [math(f\left(b\right))]사이에 존재하기 때문. 하지만 이것만으로는 근의 개수를 알 수 없다.실생활에서 쓰일만한 또다른 활용은 테이블이 흔들리지 않게 하는 위치를 찾는 것이다. 테이블 다리가 바닥에 닿는점을 각각 A, B, C, D라 하자. 그리고 A, B, C에 의해 평면이 결정되어있다고 하자[7]. 3변수 함수 [math(f)]를 점에서 평면 ABC까지의 수직 거리라 정의하면 [math(f\left(D\right)>0)]이고 나머지 점의 함수값은 0이 된다. 점 D와 마주보는 점을 B라 하면 [math(f\left(B\right)-f\left(D\right)<0)]이고 테이블을 180도 돌리면 A와 C, B와 D의 위치가 바뀌고 [math(f\left(B\right)-f\left(D\right)>0)]이 된다. 또한 [math(f\left(B\right)-f\left(D\right))]의 값은 연속적인 값이므로 중간값의 정리에 의해 [math(f\left(B\right)-f\left(D\right)=0)], 즉 테이블이 흔들리지 않게 되는 점이 180도 회전할 때 적어도 하나 존재하게 되는 것이다.
같은 원리로 임의의 순간 지표면 어딘가에는 지구 반대편과 기온과 기압이 같은 위치가 존재한다는 걸 보일 수도 있다. 지구 반대편과의 온도차를 [math(f)]라 두면 [math(f)]는 연속이고 지구를 반바퀴 돌면 [math(f)]의 값이 -1이 곱해지므로 [math(f=0)]인 지점이 존재할 것이다. 그런데 지표면은 3차원 지구의 2차원 표면이므로 [math(f>0)]인 구간과 [math(f<0)]인 구간을 나누는 [math(f=0)]인 고리가 존재하거나 항상 [math(f=0)]이거나 할 것이다. 이 고리 위에 지구 반대편과의 기압차 [math(g)]를 정의하면 같은 방법으로 [math(g=0)]인 지점이 있음을 보일 수 있다.
3.1. 중간값 정리로부터 완비성 공리의 유도
완비성 공리로부터 중간값 정리의 유도는 많은 책에 나와있지만 중간값 정리로부터 완비성 공리를 유도할 수도 있다. [math(S)]를 실수의 부분집합으로써 위로 유계이고 공집합이 아닌 임의의 집합이라고 하고 상한이 존재하지 않는다고 가정하자. 실함수 [math(f)]를 [math(x)]가 [math(S)]의 상계인 경우에 [math(f(x)=1)], [math(x)]가 [math(S)]의 상계가 아닌 경우에 [math(f(x)=0)]이라고 하자. [math(x)]가 [math(S)]의 상계가 아니라면 [math(x)]보다 큰 [math(S)]의 원소 [math(y)]가 존재하고 [math(\delta=y-x)]라고 하면 [math((x-\delta,x+\delta))]에서 [math(f(x)=0)]이므로 [math(x)]에서 연속이며 [math(x)]가 [math(S)]의 상계라면 [math(x)]는 최소상계가 아니므로 [math(x)]보다 작은 [math(S)]의 상계 [math(y)]가 존재한다. 이제 [math(\delta=x-y)]라고 하면 [math((x-\delta,x+\delta))]에서 [math(f(x)=1)]이므로 [math(x)]에서 연속이다. 또한 [math(S)]가 공집합이 아니고 유계인 실수의 부분집합이므로 [math(f(a)=1)]인 [math(a)]와 [math(f(b)=0)]인 [math(b)]가 존재한다. 따라서 중간값 정리에 의해 [math(f(x)=\dfrac{1}2)]인 [math(x)]가 존재하고 이는 모순이다. 따라서 [math(S)]는 상한을 가진다.4. 다르부의 중간값 정리
Darboux's theorem일반적으로 중간값 정리는 연속함수에 대해서 성립하지만, 연속함수가 아니면서 중간값 정리의 성질을 만족시킬 수 있다. 이러한 함수들을 다르부 함수(Darboux Function)이라고 하며 대표적인 예로 도함수 [math(f'\left(x\right))]가 있다. 다르부의 정리는 다음과 같다.
함수 [math(f:\left[a, b\right] \rightarrow \mathbb R)]이 열린구간 [math(\left(a, b\right))]에서 미분가능하고, 극한값 [math(\displaystyle \lim_{h\to 0+} {f\left(a+h\right)-f\left(a\right)\over h})], [math(\displaystyle \lim_{h\to 0-} {f\left(b+h\right)-f\left(b\right)\over h})]이 모두 존재한다고 하자. 이때 각 극한값을 [math(f'\left(a\right))], [math(f'\left(b\right))]로 나타내자. 그러면 [math(f'\left(a\right)\ne f'\left(b\right))]일 때 [math(f'\left(a\right))]와 [math(f'\left(b\right))]사이에 있는 임의의 실수 [math(k)]에 대하여 [math(f'\left(c\right)=k)]를 만족하는 실수 [math(c\in \left(a,b\right))]가 존재한다.
증명
WLOG [math(f'\left(a\right)<k<f'\left(b\right))]라고 하자.
함수 [math(g\left(x\right)=f\left(x\right)-kx)]를 정의하자. 이때, [math(g\left(x\right))]는 구간 [math([a,b])]에서 연속이므로 최대 최소 정리에 의해 [math(g)]가 최댓값을 가지는 점 [math(M\in \left[a, b\right])]이 존재한다. 한편 [math(g'\left(x\right)=f'\left(x\right)-k)]이므로 [math(g'\left(a\right)<0)], [math(g'\left(b\right)>0)]이다. 따라서 [math(M\in \left(a, b\right))]이다. 그러면 페르마의 임계점 정리[8]에 의해 [math(g'\left(M\right)=f'\left(M\right)-k=0)]이므로 [math(f'\left(M\right)=k)]이다.
다르부 함수의 대표적인 예시로 [math(\displaystyle f\left(x\right)=x^2\sin{\frac{1}{x}}\left(x\ne 0\right), f\left(0\right)=0)]의 도함수가 있다. 이 함수의 도함수는 x=0에서 불연속이지만, 중간값정리의 성질을 만족한다.
5. 중등 교육
고등학교 수학 미적분 파트, 정확하게는 미분의 바로 전 파트인 함수의 극한 마지막 부분에서 처음 보게되는 정리중 하나. 과거엔 중간값 정리라고 하였으나, 교육과정이 개편되면서 사잇값 정리로 바뀌었다. 중등 교육에서는 다소 소개하는 방법이 위와 다르다.함수 [math(f\left(x\right))]가 닫힌 구간 [math(\left[a, b\right])]에서 연속이고 [math(f\left(a\right) \neq f\left(b\right))]일 때, [math(f\left(a\right))]와 [math(f\left(b\right))] 사이의 임의의 값 [math(k)]에 대하여 [math(f\left(c\right)=k)]인 [math(c)]가 열린 구간 [math(\left(a,b\right))]내에 적어도 하나 존재한다.
이 정리 바로 앞에 나올 최대·최소의 정리와 마찬가지로 고교과정에선 증명을 하지 않고 그냥 사용한다. 사실 증명을 하려 해도 할 수 없는게, 대학 해석학 수준에서 배울 여러 가지 내용[9]을 이용해서 증명하기 때문이다.
6. 관련 문서
[1] [math(\sup)] 는 supremum(상한)의 약자로, 어떤 집합 T의 부분집합 S의 모든 원소보다 같거나 큰 T의 원소이면서 그 원소 중 가장 작은 원소(최소 상계)를 [math(\sup S)]라고 한다.[2] f가 연속임을 이용하여, ε=k-f(a)로 두면 된다.[3] 게오르크 칸토어는 원래 대각선 논법보다 먼저 이 방법으로 증명을 했었다. 이후 엄밀성이 조금 떨어지는 방식인 실수의 소수표현을 통해 직관적으로 증명을 보여준 것이 바로 대각선 논법.[4] 다른 해석으로는 열린 집합 S를 포함하는 모든 폐집합의 교집합으로 정의한다. 즉, 어떤 커다란 집합(보통은 전체집합을 의미한다)이 존재하여, [math(C=\{A|\forall A \subset U\})](단 [math(U)]는 조건상, 혹은 정의상으로 주어진 최대집합, [math(A)]는 폐집합)일 때[11], [math(\displaystyle \bigcap_{S \cap A=S} A)] 혹은 [math(\displaystyle \bigcap_{S \subset A}A)]라고 하기도 한다.[5] 사실 우리가 아는 아홉 가지 종류의 구간([math((a, b), \lbrack a, b), (a, b \rbrack, \lbrack a, b \rbrack, (-\infty, b), (-\infty, b \rbrack, (a, \infty), \lbrack a, \infty), (-\infty, \infty))])이 구간의 전부임을 보일 수 있다.[6] [math(\{f(x) : x \in \lbrack a, b \rbrack\})][7] 평면의 결정조건 중 하나가 공선점이 아닌 세 점이다[8] 미분가능한 함수의 극대/극소점에서의 미분계수는 항상 0이다.[9] 실수의 완비성에서 유도되는 상한정리, 혹은 집합론의 연결집합에 대한 정리등을 이용한다.[10] 자동차 트랜스미션 종류중에 ivt(cvt가 있다.)