1. 개요
발산 정리(Divergence theorem) 혹은 가우스 정리(Gauss's theorem)라고도 한다. 물리학의 가우스 법칙과도 관련이 있다. 미분위상수학의 스토크스 정리의 특수한 경우이기도 한데, 대학 미적분학에서 보통 스토크스 정리(Stokes theorem)라고 하면 켈빈-스토크스 정리(Kelvin-Stokes theorem)를 뜻한다.어떤 벡터장 [math(\mathbf{F}(x_1,\,x_2,\,\cdots,\,x_n)=(f_1,\,f_2,\,\cdots,\,f_n))]의 발산은
[math(\displaystyle \boldsymbol{\nabla} \boldsymbol{\cdot}\mathbf{F} = \sum_{i=1}^n \dfrac{\partial f_i}{\partial x_i} )]
로 정의한다.
1.1. 2차원에서의 발산정리
좌표평면의 유계인 영역 [math(D)]에서 정의된 벡터장 [math(F(x,\,y))]에 대하여[math(\displaystyle \int_{\partial D} \mathbf{F} \boldsymbol{\cdot} \mathbf{n} \,\mathrm{d}s = \iint_D \boldsymbol{\nabla} \boldsymbol{\cdot} \,\mathbf{F} \,\mathrm{d}V )]
가 성립한다. 여기서 [math(\mathbf{n})]은 영역 [math(D)]의 경계선에 대한 단위법선벡터다.
하지만, 영역 [math(D)]가 벡터장 [math(\mathbf{F})]을 포함하지 않을 때([math(\mathbf{F})]가 [math(D)]의 어딘가에서 정의되지 않을 때), 발산정리를 섣불리 사용할 수는 없다. 대표적인 예시가 각 원소 벡터장 [math(\mathbf{A}(x,\,y) = \frac{(x,\,y)}{x^2+y^2})]이며, 원점 [math(O)]에서 벡터장이 정의되지 않는다. 이 때는 벡터장이 정의되지 않는 그 부분을 포함하는 아주 작은 영역(계산의 편의를 위해 보통 원/구를 잡는다)을 따로 설정하여 계산하는 방법을 쓴다.
1.2. 3차원에서의 발산정리
공간 속에서 유계이고 닫힌 한 영역 [math(R)]에서 정의된 일급 벡터장 [math(\mathbf{F})]에 대하여[math(\displaystyle \iint_{\partial R} \mathbf{F} \boldsymbol{\cdot} \mathrm{d}\mathbf{S} = \iiint_R \boldsymbol{\nabla} \boldsymbol{\cdot} \mathbf{F} \,\mathrm{d}V )]
이다. 이 때 얻는 결과는 '삼차원의 한 영역을 지나는 벡터장의 flux는 그 영역에서 발산함수를 적분한 값'이란 것이다. 예를 들어 원뿔모양의 필터(곡면)가 있고, 그 필터를 지나는 물의 속도에 대한 벡터장을 알고 있을 때, 그 벡터장의 발산함수를 곡면에 따라 적분하여 얻은 값이 단위 시간당 지나가는 물의 양인 것이다.