최근 수정 시각 : 2024-01-31 10:45:17
}}}}}}}}} ||
Euler numbers / - 數列 / (독일어)Eulersche Zahlen
[math(\coth x)]를 기반으로 한 생성함수로 정의되는 베르누이 수열처럼, 오일러 수열은 [math({\rm sech}\,x)]를 기반으로 한 생성함수로 정의되는 수열이다. 거듭제곱 합의 공식을 통해 오래전부터 연구가 되어왔던 베르누이 수열과는 달리 오일러 수열은 그야말로 [math({\rm sech}\,x)], [math(\sec x)]의 테일러 급수 정도에서밖에 등장하지 않기 때문에 지명도가 훨씬 낮다. 물론 그 성질에 대해서는 꾸준히 연구가 진행되고 있긴 하다. 대표적인 특징으로 오일러 수열은 모든 홀수 항이 항상 [math(\bf0)]이며, 모든 짝수 항도 정수값이 나오는 것으로 알려져 있다. 특히 [math(4)]의 배수인 짝수 항은 양수이고 그 이외의 짝수 항은 모두 음수가 나오는데, 이를 모두 양수로 보정하기 위해 일반적인 오일러 수열 [math(E_{2n})] 대신 [math((-1)^nE_{2n})]을 오일러 수열로 이용하는 경우도 있다. 후자의 경우 학자마다 기호 사용이 제각각이라 통일된 표기가 없지만, 대체로 [math(E_{2n})]에 첨자나 장식 기호를 써서 표기한다. 대략 제[math(18)]항까지의 값은 다음과 같다.(홀수 항의 값은 생략)
[math(n)] | [math(0)] | [math(2)] | [math(4)] | [math(6)] | [math(8)] | [math(10)] | [math(12)] | [math(14)] | [math(16)] | [math(18)] |
[math(E_n)] | [math(1)] | [math(-1)] | [math(5)] | [math(-61)] | [math(1385)] | [math(-50521)] | [math(2702765)] | [math(-199360981)] | [math(19391512145)] | [math(-2404879675441)] |
다음 생성함수를 이용하여 정의된다.
[math(\displaystyle{\rm sech}\,x = \frac1{\cosh x} = \frac2{e^x + e^{-x}} = \sum_{n=0}^\infty \frac{E_n}{n!}x^n)] |
쌍곡선 함수를 복소평면으로 확장시키면 [math(\cosh ix = \cos x)]의 관계에 있으므로 위의 생성함수에 [math(ix)]를 대입하면 홀수항이 [math(0)]이 나와야 한다는 성질이 얻어진다.
[math(\displaystyle\begin{aligned} {\rm sech}\,ix &= \sum_{n=0}^\infty \frac{E_n}{n!}(ix)^n = \sum_{n=0}^\infty \frac{E_{2n}}{(2n)!}(ix)^{2n} + \sum_{n=0}^\infty \frac{E_{2n+1}}{(2n+1)!}(ix)^{2n+1} \\ &= \sum_{n=0}^\infty \frac{(-1)^nE_{2n}}{(2n)!}x^{2n} + i\sum_{n=0}^\infty \frac{(-1)^nE_{2n+1}}{(2n+1)!}x^{2n+1} \\ &= \sec x \end{aligned} \\ \therefore E_{2n+1} = 0)] |
이에 따라 생성함수도 다음과 같이 축약할 수 있다. [math(\displaystyle{\rm sech}\,x = \sum_{n=0}^\infty \frac{E_{2n}}{(2n)!}x^{2n} )] |
일반적으로 베르누이 수열이 점화식을 통해 계산되는 것처럼, 오일러 수열도 실제 수열의 값을 계산할 때에는 좌변의 역수 [math(\cosh x)]의 테일러 급수를 이용하여 유도되는 점화식을 쓴다. [math(\displaystyle\cosh x = \frac{e^x + e^{-x}}2 = \frac12 \left\{ \sum_{n=0}^\infty \frac{x^n}{n!} + \sum_{n=0}^\infty \frac{(-x)^n}{n!} \right\} = \sum_{n=0}^\infty \frac{x^{2n}}{(2n)!} = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \frac{x^6}{6!} + \cdots\cdots \\ \begin{aligned} \cosh x\,{\rm sech}\,x &= \left( {E_0} + \frac{E_2}{2!}x^2 + \frac{E_4}{4!}x^4 + \frac{E_6}{6!}x^6 + \cdots\cdots \right) \left( 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \frac{x^6}{6!} + \cdots\cdots \right) \\ &= \sum_{n=0}^\infty \sum_{r=0}^n \frac{E_{2r}x^{2r}}{(2r)!} \frac{x^{2n-2r}}{(2n-2r)!} = \sum_{n=0}^\infty \sum_{r=0}^n \frac{E_{2r}}{(2r)!(2n-2r)!}x^{2n} = \sum_{n=0}^\infty \sum_{r=0}^n \frac1{(2n)!} \frac{E_{2r}(2n)!}{(2r)!(2n-2r)!}x^{2n} \\ &= \sum_{n=0}^\infty \frac1{(2n)!} \sum_{r=0}^n \binom{2n}{2r}E_{2r}x^{2n} \\ &= E_0 + \frac 1{2!} \sum_{r=0}^1 \binom2{2r}E_{2r}x^2 + \frac1{4!} \sum_{r=0}^2 \binom4{2r}E_{2r}x^4 + \frac1{6!} \sum_{r=0}^3 \binom6{2r}E_{2r}x^6 + \cdots\cdots \\ &= 1 \end{aligned})] |
항등식이므로 [math(\displaystyle\sum_{r=0}^n \binom{2n}{2r}E_{2r} = \delta_{0,\,n})]이며(단, [math(\delta_{0,\,n})]은 크로네커 델타) 이 식으로부터 점화식이 얻어진다. [math(\displaystyle\sum_{r=0}^n \binom{2n}{2r}E_{2r} = E_{2n} + \sum_{r=0}^{n-1} \binom{2n}{2r}E_{2r} = \delta_{0,\,n} \\ \therefore E_{2n} = \delta_{0,\,n} - \sum_{r=0}^{n-1} \binom{2n}{2r}E_{2r})] |
보통은 [math(n\ge1)]이라는 조건을 붙이지만 공합(empty sum)을 [math(0)]으로 약속하는 일반적인 정의에 따르면 위 식은 음이 아닌 정수에 대해 성립한다.
[math(\sec x)], [math({\rm sech}\,x)]의 테일러 급수에서밖에 안 쓰인다. - [math(\displaystyle\sec x = \sum_{n=0}^\infty \frac{(-1)^n E_{2n}}{(2n)!}x^{2n} = 1 + \frac12x^2 + \frac5{24}x^4 + \frac{61}{720}x^6 + \cdots\cdots)]
- [math(\displaystyle{\rm sech}\,x = \sum_{n=0}^\infty \frac{E_{2n}}{(2n)!}x^{2n} = 1 - \frac12x^2 + \frac5{24}x^4 - \frac{61}{720}x^6 + \cdots\cdots)]
|
삼각함수 및 쌍곡선 함수가 각종 사칙연산을 통해 서로 연관되어 있기 때문에, 베르누이 수열과 오일러 수열 역시 서로 무관하지는 않다. 다만, 아무래도 각 함수의 곱(즉, 테일러 급수끼리의 곱)이 반드시 포함되어 있기에 서로 합연산의 관계에 있어서 손계산이 그렇게 간단한 형태로 나오지는 않는다. 차라리 서로 점화식의 관계에 있다고 이해하는 편이 빠를 것이다.
4.1. 오일러 수열을 이용한 베르누이 수 표현
[math({\rm sech}\,x\sinh x = \tanh x)]이므로 [math(\displaystyle\begin{aligned} \left\{ \sum_{n=0}^\infty \frac{E_{2n}}{(2n)!}x^{2n} \right\}\left\{ \sum_{n=0}^\infty \frac{x^{2n+1}}{(2n+1)!} \right\} &= \mathop{\color{blue}\sum_{n=1}^\infty}{\color{red}\frac{(16^n - 4^n)B_{2n}}{(2n)!}}{\color{blue}x^{2n-1}} \\ \sum_{n=0}^\infty \sum_{r=0}^n \frac{E_{2r}x^{2r}}{(2r)!} \frac{x^{2n-2r+1}}{(2n-2r+1)!} &= \sum_{n=0}^\infty \sum_{r=0}^n \frac 1{(2n+1)!} \frac{(2n+1)!E_{2r}}{(2r)!(2n-2r+1)!}x^{2n+1} = \sum_{n=0}^\infty \sum_{r=0}^n \frac 1{(2n+1)!} \binom{2n+1}{2r}E_{2r}x^{2n+1} \\ &= \mathop{\color{blue}\sum_{n=1}^\infty}\mathop{\color{red}\sum_{r=0}^{n-1} \frac 1{(2n-1)!} \binom{2n-1}{2r}E_{2r}}{\color{blue}x^{2n-1}} \end{aligned} \\ \frac{(16^n - 4^n)B_{2n}}{(2n)!} = \sum_{r=0}^{n-1} \frac 1{(2n-1)!} \binom{2n-1}{2r}E_{2r} \\ \therefore B_{2n} = \frac{2n}{16^n - 4^n}\sum_{r=0}^{n-1} \binom{2n-1}{2r}E_{2r})] |
오일러 수열이 정수 수열이고 조합도 자연수이기 때문에 결과적으로 연산 자체는 정수의 사칙연산이 된다. 분수끼리 더하고 빼야하는 베르누이 수열의 점화식 계산보다는 훨씬 수월할 것이다.
4.2. 베르누이 수열을 이용한 오일러 수열 표현
[math(\cosh x - \sinh x\tanh x = {\rm sech}\,x)]이므로, [math(\sinh x\tanh x)]부분에 대해 [math(\displaystyle\begin{aligned}&\left\{ \sum_{n=0}^\infty \frac{x^{2n+1}}{(2n+1)!} \right\} \left\{\sum_{n=1}^\infty \frac{(16^n - 4^n)B_{2n}}{(2n)!}x^{2n-1} \right\} \\ &= \sum_{n=1}^\infty \sum_{r=1}^n \frac{(16^r - 4^r)B_{2r}x^{2r-1}}{(2r)!} \frac{x^{2n-2r+1}}{(2n-2r+1)!} = \sum_{n=1}^\infty \sum_{r=1}^n \frac{16^r - 4^r}{(2n+1)!} \frac{(2n+1)!B_{2r}}{(2r)!(2n-2r+1)!}x^{2n} \\ &= \sum_{n=1}^\infty \frac1{(2n+1)!}\sum_{r=1}^n (16^r - 4^r)\binom{2n+1}{2r}B_{2r}x^{2n}\end{aligned})] |
따라서 [math({\rm sech}\, x)]에 관한 등식은 다음과 같이 되며 [math(\displaystyle\begin{aligned}&\cosh x - \sinh x\tanh x = {\rm sech}\,x \\ &= \sum_{n=0}^\infty \frac{x^{2n}}{(2n)!} - \left\{ \sum_{n=1}^\infty \frac1{(2n+1)!}\sum_{r=1}^n (16^r - 4^r)\binom{2n+1}{2r}B_{2r}x^{2n}\right\} = \sum_{n=0}^\infty \frac{E_{2n}}{(2n)!}x^{2n} = {\color{blue}1 + \sum_{n=1}^\infty}{\color{red}\frac{E_{2n}}{(2n)!}}{\color{blue}x^{2n}} \\ &= 1 + \sum_{n=1}^\infty \frac1{(2n)!}x^{2n} - \left\{ \sum_{n=1}^\infty \frac1{(2n+1)!}\sum_{r=1}^n (16^r - 4^r)\binom{2n+1}{2r}B_{2r}\right\}x^{2n} \\ &= {\color{blue}1 + \sum_{n=1}^\infty}{\color{red}\left\{ \frac1{(2n)!} - \frac1{(2n+1)!} \sum_{r=1}^n (16^r - 4^r)\binom{2n+1}{2r}B_{2r} \right\}}{\color{blue}x^{2n}}\end{aligned} \\ \frac1{(2n)!} - \frac1{(2n+1)!} \sum_{r=1}^n (16^r - 4^r)\binom{2n+1}{2r}B_{2r} = \frac{E_{2n}}{(2n)!} \\ \therefore E_{2n} = 1 - \frac1{2n+1} \sum_{r=1}^n (16^r - 4^r)\binom{2n+1}{2r}B_{2r})] |
[math(r=0)]이면 [math((16^r - 4^r)\dbinom{2n+1}{2r}B_{2r} = 0)]이므로 합의 기호 부분은 [math(r=0)]부터 더해주는 것으로 바꿔도 무관하다. 즉 [math(\displaystyle E_{2n} = 1 + \dfrac1{2n+1} \sum_{r=0}^n (4^r - 16^r)\binom{2n+1}{2r}B_{2r})] |
한편 [math(\dfrac1{2n+1}\dbinom{2n+1}{2r} = \dfrac1{(2n+1)}\dfrac{(2n+1)!}{(2r)!(2n-2r+1)!} = \dfrac{(2n)!}{(2r)!(2n-2r+1)(2n-2r)!} = \dfrac1{2n-2r+1}\dbinom{2n}{2r})]이므로 [math(\displaystyle E_{2n} = 1 + \sum_{r=0}^n \frac{4^r - 16^r}{2n-2r+1}\binom{2n}{2r}B_{2r})] |
로도 나타낼 수 있다. 어느 식이든 베르누이 수열이 유리수 수열이기 때문에 오일러 수열로 나타낸 베르누이 수열과는 달리 이쪽은 오히려 계산이 복잡해진다.