나무모에 미러 (일반/밝은 화면)
최근 수정 시각 : 2025-09-22 15:03:47

범함수


해석학·미적분학
Analysis · Calculus
{{{#!wiki style="margin: 0 -10px -5px; min-height: calc(1.5em + 5px)"
{{{#!folding [ 펼치기 · 접기 ]
{{{#!wiki style="margin: -5px -1px -11px"
<colbgcolor=#26455A>실수와 복소수실수(실직선 · 아르키메데스 성질) · 복소수(복소평면 · 극형식 · 편각) · 근방 · 유계 · 콤팩트성 · 완비성
함수함수 · 조각적 정의 · 항등함수 · 역함수 · 멱함수 · 다변수함수(동차함수 · 음함수) · 다가 함수 · 함수의 그래프 · 좌표계 · 닮은꼴 함수 · 극값 · 볼록/오목 · 증감표
초등함수(대수함수 · 초월함수 · 로그함수 · 지수함수 · 삼각함수) · 특수함수 · 범함수(변분법 · 오일러 방정식) · 병리적 함수
극한·연속 함수의 극한 · 수열의 극한 · 연속함수 · ε-δ 논법 · 수렴(균등수렴) · 발산 · 부정형 · 점근선 · 무한대 · 무한소 · 특이점 · 0.999…=1
중간값 정리 · 최대·최소 정리 · 부동점 정리 · 스털링 근사 · 선형근사(어림)
수열·급수 수열(규칙과 대응) · 급수(기하급수 · 조화급수 · 멱급수 · 테일러 급수(/목록) · 그란디 급수(라마누잔합) · 망원급수(부분분수분해)) · 그물
오일러 수열 · 베르누이 수열 · 월리스 곱 · 피보나치 수열
단조 수렴 정리 · 슈톨츠-체사로 정리 · 축소구간정리 · 급수의 수렴 판정 · 리만 재배열 정리 · 바젤 문제 · 파울하버의 공식 · 오일러-매클로린 공식 · 콜라츠 추측미해결
미분 미분 · 도함수(이계도함수 · 도함수 일람) · 곱미분 · 몫미분 · 연쇄 법칙 · 임계점(변곡점 · 안장점) · 매끄러움
평균값 정리(롤의 정리) · 테일러 정리 · 역함수 정리 · 다르부 정리 · 로피탈 정리
립시츠 규칙 · 뉴턴-랩슨 방법 · 유율법 · 경사하강법
적분 적분 · 정적분(/예제) · 스틸체스 적분 · 부정적분(부정적분 일람) · 부분적분(LIATE 법칙 · 도표적분법 · /예제) · 치환적분 · 이상적분(코시 주욧값)
미적분의 기본정리 · 적분의 평균값 정리
리시 방법 · 2학년의 꿈
다변수·벡터 미적분 편도함수 · 미분형식 · · 중적분(선적분 · 면적분 · 야코비안) ·야코비 공식
라그랑주 승수법 · 오일러 동차함수 정리 · 선적분의 기본정리 · 스토크스 정리(발산 정리 · 그린 정리변분법
미분방정식 미분방정식(/풀이) · 라플라스 변환
실해석· 측도론 측도 · 가측함수 · 곱측도 · 르베그 적분 · 절대 연속 측도 · 라돈-니코딤 도함수
칸토어 집합 · 비탈리 집합
복소해석 코시-리만 방정식 · 로랑 급수(주부) · 유수 · 해석적 연속 · 오일러 공식(오일러 등식 · 드 무아브르 공식) · 리우빌의 정리 · 바이어슈트라스 분해 정리 · 미타그레플레르 정리
함수해석 공간 위상 벡터 공간 · 국소 볼록 공간 · 거리공간 · 프레셰 공간 · 노름공간 · 바나흐 공간 · 내적공간 · 힐베르트 공간 · Lp 공간
작용소 수반 작용소 · 에르미트 작용소 · 정규 작용소 · 유니터리 작용소 · 컴팩트 작용소
대수 바나흐 대수 · [math(C^*)]-대수 · 폰 노이만 대수
정리 바나흐-앨러오글루 정리 · 베르 범주 정리 · 스펙트럼 정리 · 한-바나흐 정리
이론 범함수 미적분학 · 디랙 델타 함수(분포이론)
조화해석 푸리에 해석(푸리에 변환 · 아다마르 변환)
관련 분야 해석 기하학 · 미분 기하학 · 해석적 정수론(1의 거듭제곱근 · 가우스 정수 · 아이젠슈타인 정수 · 소수 정리 · 리만 가설미해결) · 확률론(확률 변수 · 중심극한정리) · 수치해석학 · 카오스 이론 · 분수계 미적분학 · 수리물리학(양-밀스 질량 간극 가설미해결 · 나비에 스토크스 방정식의 해 존재 및 매끄러움미해결) · 수리경제학(경제수학) · 공업수학
기타 퍼지 논리 · 합성곱
}}}}}}}}} ||

1. 개요2. 예시3. 용도

1. 개요

범함수(, functional)는 함수를 입력받아 스칼라(즉 수 하나)를 내어놓는 함수를 말한다. 즉 함수 집합을 정의역으로, 실수집합 혹은 복소수집합을 공역으로 삼는다. 사실 정의역이 함수의 집합인지는 크게 중요한 요소는 아니며, 오히려 일반적인 벡터공간을 정의역으로 삼는 정의가 더욱 자연스럽다. 함수, 행렬, 수열 등을 모두 벡터로 취급할 수 있기 때문이다. 오히려 공역이 1차원 스칼라(실수체 혹은 복소수체)인 것이 범함수로서 더 중요한 요건.[1]

일반적인 함수는 수를 입력받아 수가 결과물로 나온다. 예를 들어 [math( f(x) = x^2 - 4x + 5 )] 라는 함수가 있다면 [math( x = 3 )] 을 입력하였을 때 [math( f(x) = 2 )] 라는 결과가 나온다.

여기에서 수 대신 함수를 입력받는 함수[2]를 생각할 수 있는데, 이를 특별히 범함수(functional) 라고 이름붙인 것이다. 예를 들어 [math(\displaystyle J [y] = \int_0^1 \left( y(t)^2 - 4ty(t) + 5t^2 \right) dt )] 로 정의하면 [math( y )]가 어떤 함수냐에 따라 [math( J )]의 값이 바뀌게 될 것이다. [math( y:x\mapsto 2x )] 라면 [math(\displaystyle J [y] = \int_0^1 \left( 4t^2 - 8t^2 + 5t^2 \right) dt =\dfrac 13)] 이 된다.

자주 사용되는 범함수들은 위와 같은 형태의 적분 내부에 [math( y )] 만이 아니라 그 일차미분 [math( y' )]가 들어가는 형태, 즉 [math(\displaystyle J = \int_{ x_1 }^{ x_2 } f \{ y, y' ; x\} dx )] 와 같은 형태가 많다.

2. 예시

측도 [math(\mu)]를 고정했을 때 다음과 같은 정적분이 단적인 예시이다.[3]

[math(\displaystyle f\mapsto \int fd\mu.)]

고등학교 수학의 관점에서는, 함수 [math(g)]를 고정했을 때, 함수 [math(f)]를

[math(\displaystyle\int_{-\infty}^{\infty}f(x)g(x)dx)]

로 보내는 함수를 예로 들 수 있다. 사실 이것이 힐베르트 공간 내 실함수의 내적을 의미한다.

또한 벡터 [math(\mathbf{v})]를 고정했을 때 내적 [math(\mathbf{u}\mapsto \langle \mathbf{u}, \mathbf{v}\rangle)]도 범함수의 일종이다. 특히 리스 표현정리(Riesz representation theorem)에 의해, 내적공간의 모든 선형범함수(linear functional)는 이와 같은 내적의 꼴을 가짐이 알려져 있다.[4] 함수공간에서 내적을 [math(\displaystyle\langle f, g\rangle = \int f(x)g(x) dx)] 등과 같이 정의할 수 있음을 생각해보면, (적절한) 함수공간의 모든 (연속) 선형범함수는 위 문단처럼 정적분의 꼴로 표현된다는 강력한 결과가 도출된다.[5]

반면 미분과 부정적분 등 함수의 변환은 일반적으로 범함수라 이르지 않는다. 함숫값이 스칼라가 아니라 함수이기 때문이다.[6] 단, '특정 점 [math(x_0)]에서의 미분값'을 의미하는 함수

[math(f\mapsto f'(x_0))]

는 그 결과가 스칼라이기 때문에 범함수라 부를 수 있다.

확률 변수기댓값 또한 범함수의 일종이다. 이는 확률 변수가 (표본 공간에서 실수로 가는) 함수이기 때문이다. 즉, (확률변수 [math(X)]가 확률분포 [math(P)]를 따를 때) 기댓값 연산 [math(E(\cdot))]는 '함수' [math(X: \omega\mapsto X(\omega))]를 [math(\int X(\omega)dP(\omega))]로 보내는 (선형) 범함수다. 덜 추상적으로 생각하고 싶다면, (연속) 확률 변수 [math(X)]의 확률밀도함수를 [math(f_X)]라 할 때, 기댓값은

[math(\displaystyle E:X\mapsto \int_{\mathbb R} \rm id_{\mathbb R}\,\it f_X)]

로 정의되는 범함수이다.

수능 모의고사에 자주 나오는 "어떤 함수의 불연속점의 개수" 혹은 "미분불가능점의 개수" 또한 범함수이다.

[math( (x_1,y_1) )] 이라는 점과 [math( (x_2,y_2) )] 라는 점을 연결하는 미분 가능한 함수 [math( y(x) )] 를 생각해 보자. 이러한 함수들은 무수히 많이 존재할 것이고, 이 함수로 표현되는 곡선의 전체 길이는 다음과 같다.

[math(\displaystyle J = \int_{x_1}^{x_2} {\sqrt{1+{y^\prime}^2}} dx )]


두 점 사이의 최단경로, 즉 이 곡선의 길이를 최소화시키는 함수가 무엇이냐는 질문의 답이 두 점을 연결한 직선이라는 것은 초등학생도 직관적으로 쉽게 추론할 수 있지만, 그것을 실제로 증명하는 것은 절대로 쉽지 않다. 일반적인 범함수의 최소/최대를 찾는 방법으로 도입된 것이 오일러-라그랑주 방정식이다. 자세한 것은 해당 문서를 참조하기 바란다.

3. 용도

위에서 예로 든 것과 같이 다양한 수학, 물리학에서의 개념과 최소화 문제가 범함수로 표현이 된다.

높은 레벨의 고전역학에서 사용되는 라그랑지언의 시간적분인 작용이 범함수의 일종이다. 작용을 최소화하는 경로를 찾는 방정식을 오일러-라그랑주 방정식이라고 부른다. 양자장론에서도 그 출발점은 언제나 라그랑지언 밀도의 4차원 적분으로 표현되는 적절한 작용이다.

해석학 중에서 함수해석학(functional analysis)이라는 영역은 함수 공간과 그 위에서 정의된 작용소를 연구한다. 이 영역에서 중요하게 취급되는 힐베르트 공간, 바나흐 공간 위에서 정의된 노름내적이 바로 범함수다. 그렇기 때문에 일각에서는 이처럼 범함수를 다루는 이 영역이 '함수해석학'으로 번역된 것은 잘못이라는 주장을 펼치고 있다. 실제로 중국에서는 "functional"을 명사로 보고 "泛函分析"(범함수 해석학)로 번역했다.
[1] 다만 컴퓨터공학 등에서는 반대로 함수를 입력으로 받는다는 점을 중요시 여기고 출력이 무엇이든 상관하지 않기도 한다. 이는 두 분야가 중요하게 여기는 측면의 차이에 기반한다. 수학에서는 공역이 벡터공간이 기반하고 있는 체(the underlying field)가 될 때 (선형) 범함수가 원 벡터공간과 이루는 쌍대성을 밝히고 그 성질을 규명하는 데 초점이 맞추어진다. 반면 컴퓨터공학에서는 int, float, boolean 등의 일반적인 변수형태가 아닌 "함수"라는 특수한 형태의 변수를 처리하는 또다른 함수를 어떻게 기계상에서 구현할지, 그 때 발생하는 여러 문제(예컨대 클로저 등)를 어떻게 처리할지에 관심을 더 가진다.[2] 함수의 합성 [math(f(g(x)) = (f \circ g) (x))] 과는 다른 개념이다. 합성함수는 함수를 받은 결과 또 다른 함수가 출력되는 반면, 범함수는 아래를 보듯 함수를 받고 수를 출력한다.[3] 참고로 여기서 [math(x \mapsto y)]는 입력 [math(x)]를 출력 [math(y)]로 보내는 함수 자체를 의미한다. 함수의 정의역과 공역을 나타내는 [math(f: X \to Y)] 표기와는 다름에 유의.[4] 무한차원의 경우 몇가지 조건이 추가된다.[5] 물론 함수공간은 일반적으로 무한차원이므로 몇 가지 까다로운 조건이 더 붙는다.[6] 부정적분의 경우 적분상수의 존재 때문에 엄밀하게는 함수의 집합을 내놓는다.