[[대멸종|대멸종{{{#!wiki style="font: Italic bold 1em/1.5 Times New Roman, serif; color: #fff; "]] | |||||
{{{#!wiki style="margin:0 -12px -5px; min-height:calc(1.5em + 5px)" {{{#!folding [ 펼치기 · 접기 ] {{{#!wiki style="margin:-5px -1px -11px; word-break:keep-all" | <colcolor=#fff> [[대멸종#5대 멸종|{{{+1 {{{#fff 주요 멸종 사건 · 5대 멸종'''}}} Major Extinction Events }}}]]''' | ||||
<rowcolor=#fff> 명칭 | 발생 시점 | 발생 시점(My) | 멸종 비율(속) | ||
오르도비스기 후기 멸종(케이티절 멸종) Late Ordovician extinction Event(Katian extinction event) | 오르도비스기 후세 케이티절 ~ 허난트절 | 445 ~ 444 | 40% | ||
<bgcolor=#cb8c37> 데본기 후기 멸종(캘웨서 사건) Late Devonian Extinction Event(Kellwasser Event) | 데본기 후기 프라슨절 ~ 파멘절 | 약 372 | 40% | ||
페름기 로핑기아세 창싱절 ~ 트라이아스기 전기 인더스절 | 252 | 83% | |||
트라이아스기-쥐라기 멸종 Trassic-Jurassic Extinction Event | 트라이아스기 후기 래티아절 ~ 쥐라기 전기 애탕주절 | 201 | 73% | ||
백악기 후기 마스트리히트절 ~ 고진기 팔레오세 다니아절 | 66 | 40% | |||
그 외 멸종 사건 | |||||
휴로니아 빙하기(대산화 사건) Huronian Glaciation(Great Oxidation Event) | 고원생대 시데로스기 ~ 라이악스기 | 2,400 ~ 2,060 | - | ||
<bgcolor=#FFCF66> 스투르티아 빙하기(2차 대산화 사건) Sturtian Glaciation(Second Great Oxidation Event) | 고원생대 크리오스진기 | 716 ~ 657 | - | ||
<bgcolor=#FFCF66> 마리노아 빙하기(2차 대산화 사건) Marinoan Glaciation(Second Great Oxidation Event) | 고원생대 크리오스진기 | 654 ~ 632 | - | ||
<bgcolor=#FFCF99> 에디아카라기 말 멸종 End Ediacaran Extinction Event | 신원생대 에디아카라기 | 540 | - | ||
보토미아 말 멸종 End Botomian Extinction Event | 캄브리아기 제2세 제4절 ~ 미아오링세 울리우절 | 513 ~ 509 | 40% | ||
<bgcolor=#AACEA2> 드레스바흐 멸종 Dresbachian Extinction Event | 캄브리아기 미아오링세 드럼절 | 502 | 40% | ||
구장절-파이비절 멸종 Guzhangian-Paibian Extinction Event | 캄브리아기 미아오링세 구장절 ~ 푸룽세 파이비절 | 502 ~ 497 | - | ||
<bgcolor=#B7DCB0> 장산절 멸종 Jiangshanian Extinction Event | 캄브리아기 푸룽세 장산절 | 494 ~ 491 | - | ||
캄브리아기-오르도비스기 멸종 Cambrian–Ordovician extinction event | 캄브리아기 푸롱세 제10절 ~ 오르도비스기 전기 트레마독절 | 485 | - | ||
카라도크 멸종(모히칸-신시내탄 멸종) Caradoc extinction event (Mohawkian-Cincinnatian extinction event) | 오르도비스기 후세 샌드비절 ~ 케이티절 | 454 ~ 452 | - | ||
오르도비스기-실루리아기 멸종(허난트절 멸종) Ordovician-Silurian extinction event (Hirnantian extinction event) | 오르도비스기 후세 허난트절 ~ 실루리아기 란도베리세 루단절 | 443 ~ 440 | 31% | ||
이레비켄 멸종 Ireviken extinction event | 실루리아기 란도베리세 텔리치절 ~ 웬록세 셰인우드절 | 433 | - | ||
<bgcolor=#B3DED4> 룬드그레니 멸종 Lundgreni extinction event | 실루리아기 웬록세 호머절 | 429 | - | ||
멀데 멸종 Mulde extinction event | 실루리아기 웬록세 호머절 ~ 러들로세 고스티절 | 427 | - | ||
라우 멸종 Lau extinction event | 실루리아기 러들로세 로드로프절 ~ 프리돌리세 | 424 | 9% | ||
<bgcolor=#E5F2E8> 프리돌리세 멸종(실랄레 멸종) Pridolian extinction event(Silale extinction event) | 실루리아기 프리돌리세 | 422 | - | ||
<bgcolor=#F2D390> 아이펠절 멸종(카차크 멸종) Eifelian extinction event(Kacak extinction event) | 데본기 중기 아이펠절 | 388 | 32% | ||
<bgcolor=#F3E09E> 지베절 멸종(타가닉 멸종) Givetian extinction event(Taghanic extinction event) | 데본기 중기 지베절 | 384 | 36% | ||
데본기-석탄기 멸종(한겐부르크 멸종) Devonian-Carboniferous extinction event (Hangenberg extinction event) | 데본기 후기 파멘절 ~ 석탄기 전기 푸르네절 | 359 | 50% | ||
<bgcolor=#ADBE8A> 비제절 멸종 Visean extinction event | 석탄기 미시피시기 비제절 | 332 | - | ||
<bgcolor=#C4C488> 세르푸호프절 멸종 Serpukhovian extinction event | 석탄기 미시피시기 세르푸호프절 | 325 | 39% | ||
석탄기 열대우림 붕괴 Carboniferous rainforest collapse | 석탄기 펜실베이니아기 모스코바절 ~ 카시모프절 | ~305 | - | ||
<bgcolor=#E19281> 아르틴스크절 온난화 사건 Artinskian Warming Event | 페름기 시스우랄세 아르틴스크절 | 287 | - | ||
올슨 멸종 Olson's Extinction | 페름기 시스우랄세 쿤구르절 ~ 과달루페세 로드절 | 273 ~ 267 | - | ||
캐피탄절 멸종 Capitanian mass extinction event | 페름기 과달루페세 캐피탄절 ~ 러핑세 우지아필절 | 262 ~ 259 | 25% | ||
<bgcolor=#AA67AA> 그리스바흐-디에네르 경계 사건 Griesbachian-Dienerian boundary event | 트라이아스기 전기 인더스절 | 252 | - | ||
<bgcolor=#A05EA5> 스미스-스파티아 경계 사건 Smithian–Spathian boundary event | 트라이아스기 전기 올레네크절 | 249 | - | ||
올레네크절-아니수스절 경계 사건 Griesbachian-Dienerian boundary event | 트라이아스기 전기 올레네크절 ~ 중기 아니수스절 | 247 | - | ||
<bgcolor=#C897C6> 라딘절 멸종 Radian Extinction Event | 트라이아스기 라딘절 | 240 | - | ||
<bgcolor=#C6AAD2> 카닉절 우기 사건 Carnian pluvial episode | 트라이아스기 후기 카닉절 | 234 ~ 232 | - | ||
노릭절-래티아절 멸종 Norian-Rhaetian extinction event | 트라이아스기 후기 노릭절 ~ 래티아절 | 210 | - | ||
플린스바흐절-토아르시움절 경계 사건 Pliensbachian-Toarcian extinction event | 쥐라기 전기 플린스바흐절 ~ 토아르시움절 | 184 | - | ||
<bgcolor=#90CFF2> 토아르시움절 해양 무산소 사건 Toarcian Oceanic Anoxic Event | 쥐라기 전기 토아르시움절 | 183 ~ 182 | - | ||
<bgcolor=#BAE4F0> 칼로비움절 멸종 Callovian extinction Event | 쥐라기 중기 칼로비움절 | 163 | - | ||
쥐라기-백악기 멸종(티토누스절 멸종) Jurassic-Cretaceous(Tithonian) extinction event | 쥐라기 후기 티토누스절 ~ 백악기 전기 베리아절 | 145 | - | ||
<bgcolor=#C3DFA4> 셀리 멸종 Selli extinction event | 백악기 전기 압트절 | 121 ~ 120 | - | ||
<bgcolor=#C3DFA4> 압트절 멸종 Aptian extinction event | 백악기 전기 압트절 | 117 ~ 116 | - | ||
세노마눔절-투로니아절 멸종 Cenomanian-Turonian extinction event | 백악기 후기 세노마눔절 ~ 투로니아절 | 94 | - | ||
고진기 팔레오세 타넷절 ~ 에오세 이퍼르절 | 56 | - | |||
에오세-올리고세 멸종 Eocene–Oligocene extinction event | 고진기 에오세 프리아보나절 ~ 올리고세 루펠절 | 33 | - | ||
<bgcolor=#FFF66D> 마이오세 중기 기후변화 사건 Middle Miocene Climatic Transition event | 신진기 마이오세 랑게절 | 14 | - | ||
플라이오세-플라이스토세 멸종 Pliocene–Pleistocene extinction event | 신진기 플라이오세 피아첸자절 ~ 제4기 플라이스토세 젤라절 | 2 | - | ||
플라이스토세 후기 멸종 Late Pleistocene extinctions Extinction event | 제4기 플라이스토세 후기 | 0.6 ~ 0.03 | - | ||
<bgcolor=#FFE6CB> | 제4기 홀로세 메갈라야절 | 0 | - | ||
{{{#!wiki style="margin:0 -10px -5px; min-height:calc(1.5em + 5px)" {{{#!folding [ 각주 ] {{{#!wiki style="margin:-6px -1px -11px" | * 1. 케이티절 멸종과 오르도비스기-실루리아기 멸종을 묶어서 5대 멸종중 하나인 오르도비스기 후기 멸종으로 통합하고 두 멸종 사건을 오르도비스기 후기 멸종의 과정에 포함하는 것이 일반적이지만 두 멸종 사이에 100만년의 공백기가 존재하기 때문에 이 틀에서는 별개의 멸종 사건으로 분리하였다.
| }}}}}}}}} | |||
틀:지질시대 · 지질학 관련 정보 | }}}}}}}}} |
백악기-팔레오기 멸종 Cretaceous–Paleogene(K-Pg) extinction Event | |
기간 | |
<colbgcolor=#fff,#191919> 백악기 후기 마스트리히트절 ~ 고진기 팔레오세 다니아절 (6,580만년 전 · 최소 1,000년 ~ 최대 71,000년) | |
원인 | |
유카탄 반도 칙술루브 지역의 소행성 충돌 | |
결과 | |
전체 생물 속의 40% 이상, 전체 생물 종의 75% 이상 멸종 공룡[1] · 익룡 · 장경룡등의 거대파충류 및 암모나이트 절멸 중생대의 종결과 신생대의 시작 |
[clearfix]
1. 개요
백악기-팔레오기 멸종(Cretaceous–Paleogene[Kreide-Paläogen] extinction event)은 기원전 6,600만 년경[2] 일어난 생물의 대멸종 사건으로, 이는 지질학적으로 중생대와 신생대를 가르는 기준이며, 중생대 백악기 마스트리히트절과 신생대 고제3기(팔레오기) 다니아절(데인절) 사이의 경계에 해당한다. 오늘날의 자연 파괴를 일컫는 '홀로세 대멸종(현세 대멸종)'을 제외하고는 가장 최근에 일어난 대멸종으로서, 지질 시대 사상 다섯 번째 대멸종에 해당한다.대중적으로는 '공룡 멸종(Dinosaur extinction)'으로 잘 알려져 있다. 학술적으로는 독일어 '백악기(Kreidezeit)'와[3] '팔레오기(Paleogene)'에서 두문자를 따 K-Pg 멸종이라고 부른다. 예전에는 K-T 멸종이라고 불렀으나, ICS[4]에서 'Tertiary(제3기)'라는 용어를 권장하지 않으면서[5] 'Paleogene'으로 대체되었다.
2. 특징
공룡 멸종의 날[6] |
대체로 육지에서의 피해가 더 컸지만, 육지 내의 민물에 사는 생물들은 오히려 바다에 사는 생물에 비해 피해가 경미했다. 특히 양서류의 경우 거의 피해가 없었던 것으로 보이며, 바다의 비공룡 파충류인 장경룡, 모사사우루스 등의 해양 파충류들이 대거 절멸한 것에 비해, 육지의 비공룡 파충류인 악어[8]나 거북, 뱀, 도마뱀 등은 무사히 살아남았다. 그리고 로라시아상목과 영장상목을 포함한 포유류들도.
흔히 대다수 매체에서는 포유류가 대멸종을 대수롭지 않게 넘어가는 묘사가 흔하지만 절대 그렇지 않다.[9] 굳이 따지자면 진짜 대수롭지 않게(?) 넘어간 종들은 민물 어류, 절지동물, 양서류라고 볼 수 있다.
때문에 K-Pg 멸종은 태반류가 오세아니아 및 제4기 이전의 남아메리카를 제외한 지역에서 생태계의 주도권을 잡은 계기 중 하나이기도 하다. 피해 규모가 알려진 것보다 커서 포유류의 93%가 멸종했다는 연구 결과도 있다. 그리고 상술했듯 일부 수각류 공룡들인 새도 살아남았다.
또한 선술했듯이 모사사우루스 등의 해양 파충류들의 멸종으로 상어들은 반사 이익을 봤는데, 정작 백악기 바다에서 번성하며 해양 파충류와 함께 바다를 지배한 악상어목은 매우 심각한 타격을 입어서, 흉상어목에게 자리를 내준다. 다만 살아남은 소수의 악상어목 상어들이 다시 거대하게 자라기 시작해, 신생대 마이오세에 이르러서는 거대 해양 포식자 자리를 되찾았었다가 플라이오세 빙하기 이후 메갈로돈 등의 거대 상어들은 다시 멸종했다. 현재 악상어목 상어는 백상아리 등 가장 큰 포식자 어류라는 타이틀은 유지 중이나 전체적으로 보면 10여 종뿐이 남지 않아 위태로운 상황이다.
기원전 6600만 년에 북반구의 어느 봄날에 일어났다는 연구 결과가 나왔다.#
3. 원인 가설
3.1. 유카탄 반도의 소행성 충돌설
해당 가설을 현대 지구에 실시간으로 시뮬레이션한 영상[10] |
1968년 노벨물리학상을 수상한 루이스 월터 앨버레즈와 그의 아들 월터 앨버레즈 부자(父子)가 1980년부터 주장한 이론으로 현재 다수설이자 정설로 받아들여진다. 약 6,600만 년 전 소행성 충돌로 인한 대규모의 충격파[11]와 산성비 등이 전세계를 덮쳤고, 그중에서 특히 대량으로 발생한 먼지가 대기권 상층부에 머물며 일으킨 빙하기가 멸종의 원인이 되었다는 것이다.
특히 소행성 충돌설의 가장 강력한 근거로 제시되고 있는 것은 K-Pg 경계에 위치하는 지층에서 기이할 정도로 넓은 범위에 걸쳐 다량의 이리듐이 발견된다는 것이다. 이리듐은 지구 표면보다는 내부, 혹은 지구처럼 분화를 거치지 않은 지구 외 물질에 다량 분포하므로 K-Pg 경계의 이리듐 함량이 소행성의 충돌을 지시한다는 것. 또한 해당 지층에서는 암석이 녹아서 만들어진 천연 유리, 텍타이트(Tektite)가 발견되는데, 텍타이트의 생성 원인으로 지목되는 것 중 하나가 엄청나게 강력한 충격에 의해 암석이 순간적으로 녹은 것이라는 점도 소행성 충돌설의 근거가 되고 있다.
그러나 1980년대에만 하더라도 이 소행성 충돌설에는 큰 약점이 있었는데, 이렇게 거대한(지름 최소 10㎞로 추정) 소행성이 떨어졌는데도 크레이터가 발견되지 않았다는 점이었다. 당시까지 알려진 지표상의 크레이터는 생성 연대를 조사해 봐도 모두 K-Pg 멸종 시기와 달랐다.
소행성 충돌설 주장 학자들을 괴롭히던 이 미스테리는 우연한 계기로 실마리를 찾게 되었다. 앨버레즈 부자의 학설이 나오기도 전인 1960~70년대에, 멕시코의 국영 석유회사인 페멕스(Pemex)는 유카탄 반도 일대에서 석유 탐사 작업을 진행해오고 있었다. 그러던 1978년에 페멕스에 고용된 미국인 지구물리학도 글렌 펜필드(Glen Penfield)와 그의 동료 안토니오 카마르고(Antonio Camargo)는 유카탄 반도 상공에서 측정한 항공 자력탐사 데이터를 분석하다가 특이한 패턴을 발견한다. 칙슐루브 북쪽의 멕시코만 해저에 반원 모양의 거대한 지형이 있었던 것이다. 펜필드는 이 자력탐사 자료와 1960년대 중력탐사 자료를 종합해본 결과, 이 지형은 실제로는 해저에 절반, 육지에 절반이 걸쳐진 지름 약 180㎞의 거대한 원 모양임을 알아차렸다.
그러나 이 탐사자료는 페멕스 사의 기밀로 분류되고 있었기 때문에, 펜필드는 1981년 미국 물리탐사학회 학술대회에서 유카탄 반도에서 거대한 크레이터가 발견되었다는 단편적인 사실만을 발표할 수 있었다. 게다가 이 학회는 석유, 광물회사 등 기업 현장의 공학자들이 중심이었기 때문에, 앨버레즈 부자 등 과학자들은 큰 관심을 갖지도 않았다. 이 발견은 휴스턴의 지역 신문인 《휴스턴 크로니클》에 짤막한 기사로 소개되었을 뿐 금세 잊히고 말았다.
이 결과가 재조명된 것은 학설 발표 후 10년이 지난 1990년의 일이었다. 당시 소행성 충돌설의 증거를 찾고 있던 연구자 가운데에는 앨런 R. 힐더브랜드(Alan R. Hildebrand)가 있었다. 그는 K-Pg 경계 지층에서 관찰되는 충격석영(shocked quartz)이 소행성 충돌의 증거라는 연구를 하던 박사과정 학생이었다. 그는 강한 충격을 받았을 때 생성되는 충격석영이 아이티 등 카리브 주변에서 많이 발견된다는 사실을 알아내고, 이 지역에서 크레이터의 흔적을 찾아오고 있었다.
그러던 그에게 1990년에 《휴스턴 크로니클》의 기자가 예전에 유카탄 반도에서 크레이터 흔적이 발견되었다는 기사가 난 적이 있다고 알려줬다. 힐더브랜드는 과거 기사를 찾아내어 1990년 4월에 아직도 페멕스에 근무하고 있던 펜필드에게 연락을 했으며, 그로부터 과거의 발견 사실을 상세히 듣게 되었다. 아울러 펜필드는 과거 페멕스 사가 유카탄 반도 일대에서 시추한 지질 샘플이 남아있다는 사실도 알려줬으며, 힐더브랜드는 이를 분석하여 충격석영 등 강한 충격으로 생성되는 광물이 매우 풍부함을 확인했다. 이러한 광물의 존재는 펜필드가 발견한 크레이터가 화산활동에 의한 분화구가 아닌, 운석이나 소행성 같은 외계천체로 인해 생긴 것이라는 결정적 증거가 되었다.
참고로 힐더브랜드는 해당 내용으로 박사 학위를 받았으며, 논문 주제가 발표된 이후 여러 대학에서 일단 전임교원 계약을 하자는 문의를 해왔다고 한다.
이어 1996년에는 NASA가 과학위성을 이용한 정밀한 중력탐사를 통해 크레이터의 존재를 보다 명확하게 확인하였다.[12]
Chicxulub Crater(칙술루브 크레이터): 지름 180km[13]
이 학설을 지지하는 쪽에서는 유카탄 반도의 크레이터 규모가 그 전에 이리듐의 양으로부터 추산한 소행성의 크기와 잘 맞아떨어진다고 보고 있다. 또한 이리듐 층의 두께를 조사해 보더라도 유카탄 반도 근처로 갈수록 두께가 두꺼워지고 유카탄 반도에서 멀리 떨어진 곳은 두께가 비교적 균일하다는 연구결과도 근거로 내세운다. 이를 보면 유카탄 반도가 중심지인 것이 명백하며 화산 폭발설에서 주장하듯이 데칸 고원 등이 중심지가 될 수 없다는 것. 2010년 3월에는 지질학자 100여 명이 K-Pg 멸종이 유카탄 반도의 소행성 충돌에 의한 것임을 지지한다는 성명을 내놓았고, 2020년 국제공동연구팀이 공룡 멸종의 원인이 화산이 아닌 소행성이라는 연구 결과를 발표했다.
2020년 언론에 발표된 학계 보고
2018년에 함부르크 대학교 지질연구소의 울리히 릴러 교수가 이끄는 연구팀은 피크링 해양시추 등을 통한 암석 증거를 확보해 이런 베일을 걷어내는 연구결과를 과학저널 네이처에 발표했다.#
이 가설에서 섬뜩한 점은 지구는 자전하고 있으므로 운석이 떨어진 시점이 겨우 몇 시간만 달라졌어도 운석은 유카탄 반도가 아닌 대서양에 떨어졌으리라는 점이다. 그 경우 높이 4.6km의 초대형 쓰나미가 일어나 대서양 연안의 동물들이 떼죽음을 당했겠지만 먼지 발생으로 인한 기후 변화는 일어나지 않았을 테니 대멸종까지는 일어나지 않았을 것이다. 6,600만 년 전 대륙 위치는 지금과 크게 달랐지만 예측 위치를 고려해도 북미 대륙 끝에 걸리는 건 마찬가지였다.
즉 비조류 공룡들은 겨우 몇 시간 차이로 지구에서 사라진 것이다. 만약 운석이 대서양에 떨어졌다면 현재까지 공룡이 강력한 지배종으로 계속 남아있었을것이다. 그에 따라 포유류는 지금처럼 다양하게 번성할 수 없었을 것이고, 인류 같은 지적 생명체는 아예 나타나지 못했거나 포유류가 아닌 석형류에서 나타났을 것이다.[14]
쓰나미에 대한 흔적이 발견되었다.# 또, 사우스웨스트 연구소(Southwest Research Institute)의 과학자들이 충돌 당시 지층에서 얻어진 암석 샘플들을 분석한 결과 이 소행성은 탄소질 콘드라이트(Carbonaceous chondrite 혹은 C chondrite) 소행성일 가능성이 가장 크다고 나타났다. #
같은 시기에 서아프리카 연안에서 약 6천600만 년 전 공룡시대를 마감한 때와 비슷한 시점에 형성된 소행성 충돌구가 발견돼 학계에 보고됐다. #
최근 학자들은 소행성 충돌로 인한 먼지구름이 대멸종의 큰 원인이라는 연구결과를 내놓았다. #
3.2. 데칸 트랩 화산 폭발에 의한 대멸종설
또 다른 원인으로 지목되는 초화산 활동은 인도 데칸 고원 형성 계기가 된 데칸 트랩 초화산 활동이다.이 화산 활동 및 그와 관련된 장기적인 기후 변화에 의한 공룡의 멸종을 야기했다는 가설이다. 양치식물과 초식 공룡, 육식 공룡을 포함한 대형 파충류는 한파에 특히나 취약한 생태적 특성을 띠는데, 기후 변화에 의한 개체의 감소 및 이러한 종을 주식으로 삼는 종이 아사하는 연쇄 작용으로 인하여 K-Pg 대멸종이 진행되었다는 가설이다.
화산재가 태양광의 진입을 차단하고 기후에 장기간의 영향을 줄 수 있다는 것은 현대에도 확인된 바 있으며, 데칸 고원 화산 활동은 그보다 훨씬 대규모로 벌어졌으므로 기후 변화로 인한 대멸종을 야기할 수 있다는 것이다. 또한 화산 활동에 의해서 지구 내부의 이리듐이 분출될 수도 있으므로 이리듐의 이상 분포 역시 설명할 수 있다고 보았다. 인도 학계에서 주로 연구되어 온 설이다.
데칸 트랩의 발생 원인의 다른 해석으로는 프랑스 등지에서 제시되어 온 학설로, 앨버레즈 부자의 소행성 충돌설에 포함된다고 볼 수 있다. 소행성 충돌이 K-Pg 대멸종의 원인 중 하나가 되었음은 부정하지 않으나, 유카탄 반도에 충돌한 소행성이 아니라, 보다 더 큰 규모의 소행성이 데칸 고원에 충돌하여 대멸종을 야기했을 것이라고 추측하는 학설이다.
만약 데칸 트랩이 소행성 충돌로 만들어진 화산이라면 유카탄 반도의 소행성 충돌보다 더 큰 규모의 소행성 충돌을 예상하고 있는데, 발견될 경우 크레이터의 규모[15]는 200km를 넘어설 것이라고 보고 있다.
이 학설의 가장 큰 근거는 유카탄 반도 주변에 분포하는 지층에서 발견되는 텍타이트 층과 이리듐 이상 층의 연대가 제법 떨어져서 나타난다는 것이다. 유카탄 반도 충돌설을 지지하는 과학자들은 해당 현상이 충돌의 충격으로 인한 해일이나 다른 교란에 의하여 벌어진 일이라고 설명하는데, 문제는 그 사이에 끼어 있는 층에서 장기간에 걸친 생물 활동, 태풍이 교란시킨 흔적이 있는 퇴적층, 해록석[16] 등이 온전하게 발견되는 등 절대 교란으로 생길 수 없는 지층을 사이에 끼고 있다는 것이다. 해당 학설에서는 유카탄 반도의 충돌은 적어도 K-Pg 경계면의 30만 년 전에 일어났으며, 따라서 대멸종의 직접적인 원인이 될 수는 없다고 주장하고 있다.[17]
3.3. 감마선 폭발설
공룡이 살았던 시대에 외계 초신성 폭발로 인해 감마선이 분출되어 불운하게도 지구가 영향받았다는 가설. 해당 문서 참조.참고로 감마선 폭발에 지구가 휘말릴 가능성이 생기는 일은 5백만 년에 한 번 꼴이라고 한다. 그래서 4억 5만 년 전 고생대 오르도비스기 - 실루리아기 사이에 있었던 대멸종의 여러 원인 중 하나의 가설에 해당한다.
3.4. 기후변화설
기후가 갑자기 더워져 온난화가 일어나거나 추워져서 빙하기가 일어나거나 건조해지거나 습해지는 등 급격한 기후 변화가 일어나 멸종했다는 설. 현재는 단순히 기후 변화 요인 하나만이 아닌 위의 운석 충돌설, 화산 폭발설 등과 함께 복합적으로 급격한 기후 변화가 일어나 멸종을 가속화시켰을 것으로 보고 있다.3.5. 기타 가설
대다수 가설이 '공룡'에 초점을 맞추고 있기 때문에, 아래 항목에서 설명하는 포유류나 식물, 특히 해양 생물의 대량 멸종은 설명하지 못하고 있다. 그래서 학계에서는 거의 사장된 이론들이 많으며, 일반인에게도 단순히 소개하는 수준으로만 설명되고 있다.- 식물상 변화설
초식공룡들이 새로 출현한 속씨식물을 소화하지 못해서 멸종했다는 가설. 그러나 속씨식물이 주도적인 지위를 차지하기 시작한 것도 이미 백악기 중기(약 1억년전)의 일이다. 그리고 소화 기관이나 소화 효소 등은 화석으로 남지 않기 때문에 공룡들이 속씨 식물을 소화시키지 못했다는 증거 또한 없다. 속씨식물의 등장과 확산은 지질학적 시간 동안 이루어진 일이므로 오히려 공룡들이 그런 식물상에 적응했을 가능성이 더 높다. 예를 들어서 일부 공룡은 현재에도 멀쩡히 속씨식물을 먹고 있다. 공룡이 양치류나 나자식물만 고집하는 까다로운 식성이었다면 지금쯤 양계장에서는 곡식 대신 고사리를 소처럼 씹어먹고 있는 닭을 볼 수 있을 것이다. 대형 파충류인 이구아나 역시 각종 속씨식물을 오늘도 맛있게 먹고 있는지라 식물상의 점진적인 변화는 한두 종이라면 몰라도 초식동물들을 대량으로 멸종시킬 정도로 강한 힘을 발휘하지 못한다. 그리고 그런 일이 일어나더라도 동물상의 변화는 점진적으로 일어날 것이며, 실제 백악기-고제3기 사이에서 보이는 공룡의 급격한 소멸을 설명할 수 없다.
- 알 도난설
포유류나 일부 소형 공룡들이 다른 공룡의 알을 훔쳐먹어서 새끼가 태어나지 않아서 공룡이 멸종했다는 가설. 논리적으로 생각해 봐도 말이 안 되는 가설인 게, 생명체 역사상 동물이 알을 낳기 시작한 이후 그 알을 노리는 동물은 항상 존재해왔기 때문이다. 당장 현재도 생존하고 있는 각종 어류와 양서류, 파충류, 조류의 알을 노리는 포식자들이 얼마나 많은지 생각해 보자. 또한 설사 알을 훔쳐먹는 포유류가 있었다고 해도 알만 고집해서 먹는 것은 물론 아니고, 공룡들도 길게 본다면 알을 더욱 많이 낳는 쪽으로 진화할 수 있다.
- 공룡 변비설
엄청난 기후변화에 공룡의 배변을 도와주는 성분이 있는 식물이 사라지고, 공룡의 배변을 도와주는 성분이 없는 식물이 생겼다. 그 식물을 먹은 공룡이 배변을 하지 못해서 변비로 멸종했다는 가설. 물론 이 역시 위의 식물상 변화설과 마찬가지의 이유로 신빈성이 떨어지고 반박된다.
- 공룡 종족 노쇠설
공룡의 몸집이 지나치게 커지며, 몸이 무겁고 아둔해졌으며 이로 인해 짝짓기가 불가능해져서 멸종했다는 설. 진화의 의미를 잘못 이해한 주장으로 가설이라고 하기도 애매할 정도이다. 무조건 커지는 것이 진화가 아니며, 몸집이 큰 것이 생존에 유리하여 선택압을 여러 세대 동안 받아야 몸집이 커질 수 있다. 짝짓기가 불가능하거나 설령 가능하다고 해도 곤란해질 만큼 큰 개체라면 번식을 하지 못하고 죽게 되기 때문. 환경이 변하지 않는다고 가정할 때, 동물의 체구는 번식이 가능한 선에서 유지될 수밖에 없다. 게다가 모든 공룡이 거대한 것도 아니었으며, 용각류 같은 경우 몸집에 비해선 굉장히 가벼운 측에 속했다. 몸 곳곳의 기낭 등으로 몸무게를 효과적으로 감소시켰기 때문으로, 이에 따라 그 큰 용각류를 물에 담그면 둥둥 떴을 거라고 추정되기도 한다.
- 먹이 부족 및 동족포식설
초식공룡의 주 먹이인 식물과 소형 육식공룡의 먹이인 곤충, 수생 공룡의 먹이인 물고기 등의 먹이가 더 이상 남아나질 않게 되자, 결국 어쩔 수 없이 생존을 위해 초식공룡들끼리 서로 잡아먹고, 초식 공룡들이 전부 죽자, 이번엔 육식 공룡들끼리 서로 잡아먹더니, 나중에는 생존에 눈이 멀어 새끼들까지 잡아먹는 등 살아 있는 것은 닥치는 대로 먹어 버려서 종의 씨가 말라버려 멸종했다는 설. 비록 소수의 의견이긴 하나, 현재는 위의 기후 변화설 및 운석 충돌설, 화산 폭발설 등이 복합적으로 발생하여 먹이 사슬의 가장 아래인 초식공룡 등의 주식이 급격히 줄어들어 대기근이 발생해, 결국 생존을 위한 동족포식을 통한 멸종으로 이어졌을 것으로 보고 있다. 이 가설을 주장하는 사람들은 인간의 생존을 위한 어쩔 수 없는 식인 행위의 사례 등이 이를 뒷받침해준다고 설명한다.
- 메테인 가스설
현재는 사실상 사장된 가설로 공룡이 방귀로 내뿜는 메테인이 지나치게 많아 이에 질식하거나 온난화가 일어났다는 설. 과학자들이 연구한 바에 따르면 지구가 생물상의 영향으로 온난화가 진행된 건 인류가 화석 연료를 사용하기 시작한 이후이다. 애초에 공룡과 그 이후의 포유류는 물론 인간이 발생시키는 온실 가스도 산업화 이전에는 지금과 비교가 불가능할 정도로 미량이었다. 정작 백악기 시절은 지금보다 평균온도도 훨씬 높고 이산화탄소 농도가 현재의 4배인 매우 따뜻한 시기였다.[18]
- 짝짓기 호수 부족설[19]
현재는 사장된 가설로, 공룡들이 얕은 호수가 넓게 펼쳐져 있는 중생대 환경에서 번성하였고 이와 같은 얕은 호수에서만 짝짓기가 가능했다는 구식 가설을 바탕으로, 대륙이 이동함에 따라 이런 호수가 사라졌고, 이 때문에 공룡이 멸종했다는 설. 당연히 학자들에게 인정받지 못했고 여러 고생물 학자에게 비판을 받았다.
4. 절멸한 종
절멸한 종의 특징은 몸집이 크고 번식력이 약한 종들이 대부분을 차지하고 있었다. 단 두족류의 경우 그 특유의 번식 방식과 서식 위치로 인한 타격이 컸다.- 대다수 석형류 - 어룡과 플리오사우루스류, 검룡류, 헤테로돈토사우루스과는 이 대멸종 이전에 멸종되었다.[20]
- 현존하지 않는 중생대 포유류 계통들 대다수 - 약 97%의 포유류가 전멸했고 살아남은 3%가 현생 포유류로 진화했다는 수치도 있다.[22]
- 대다수 악상어목 - 아주 다양한 종류의 악상어목 상어들이 바다를 지배하였으나, K-Pg 멸종으로 우점종의 자리를 흉상어목에게 자리를 내주고 현재는 10여종 뿐이 남지 않았다. 그래도 신생대에 메갈로돈이나 백상아리 같은 최대 크기 포식어류 자리는 놓치지 않아서 현재까지도 명맥은 근근히 유지중이다.
- 특정 연체동물
- 일부 극피동물
- 일부 규조류, 유공충 등 해양 플랑크톤.
- 일부 겉씨식물과 양치식물
5. 생존한 종
생존한 종의 특징은 덩치가 작고 번식력이 강하며 굴에 들어가도 생존이 가능하며 잡식성이 강한 종들이 많았다. 이 대멸종에서 살아남은 종들이 점차 진화를 하게 된다.- 척추동물들
- 현재 존재하는 태반류 포유류들의 조상들
- 일부 유대류[23]와 일부 단공류
- 일부 조류형 공룡 - 극히 일부만 살아남았다.
- 도마뱀[24][25] 거북, 일부 악어류[26], 캄프소사우루스 등의 비공룡 파충류들
- 사실상 거의 모든 양서류
- 엔코두스, 두툽상어 등 어류 - 민물어류는 거의 피해가 없었지만 바다 쪽에서는 주류 어류 계통이 뒤바뀌는 일이 일어났다. 그래서 신생대 때 그 빈자리를 우리가 아는 대부분의 현생 어류들이 차지했다. 그래서 인지 폴립테루스나 아로와나같은 민물 고대어 키우기는 많이 들었는데 실러캔스 같은 너무 귀한 해수 고대어는 키우기가 들어보기 힘들다. 대다수 해수 관상어 들이 속한 목이나 과 찾아보면 대부분 팔레오세-에오세 쯤에 나온걸 볼수있다. 상술한 악상어목도 K-Pg 대멸종으로 엄청난 타격을 입고 이 빈자리를 흉상어목 상어들이 종분화가 다양하게 되어 바다를 지배하게 된다.
- 앵무조개, 고대 문어, 일부 오징어의 조상, 흡혈오징어 계열 생물의 일부 등의 두족류 - 상술된 암모나이트와 벨렘나이트의 멸종으로 타격을 입긴 했지만 알도 그냥 해저에 뿌리고, 바다의 표층에 서식하며, 성장기와 수명이 짧았으며 종의 세분화로 인한 전문화 현상으로 치명적 타격을 입고 절멸한 암모나이트, 벨렘나이트와 달리 심해에서 10년 이상의 기간 동안 살면서 알도 바위에 붙여두었던 앵무조개, 해저 바닥을 기어다니며 바위틈이나 동굴에 짱박혀서 살던 문어류, 마찬가지로 심해에서 유기물이나 시체를 먹고 버티던 흡혈오징어 계열 등은 무사히 버텼다. 오징어 라인의 생물 또한 일부 생존.
- 곤충이나 거미등 절지동물 - 페름기 대멸종과는 다르게 곤충류가 상대적으로 별 타격이 없는 멸종이기도 하다.
- 대부분의 식물
6. 대중 매체에서의 묘사
아무래도 각종 문화매체에서 큰 존재감을 보인 동물들이 멸종한 시기여서 그런지 대중적으로 인지도도 높고, 그로인해 각종 창작물 등에서도 많이 언급된다.- 각종 고생물 다큐멘터리, 특히 공룡이 주연인 다큐멘터리에서는 거의 항상 마지막 부분을 장식한다.
- 1988년 NHK가 주축이 되어 제작한 국제공동 다큐멘터리 지구대기행 7편에서는 공룡의 멸망 장면을 찍기 위해 그 당시 세계 최고 수준이던 일본의 실사 특촬물 기법이 동원되었는데, 그 방법이란 거대 스튜디오에 열대우림을 지어놓고 실제로 불을 당겼다.#[27]
- 다이너소어 초반부의 운석 충돌 장면은 이 사건의 오마쥬로 보인다.
- 데드 스페이스 시리즈에서는 지구에 떨어진 블랙 마커로 인해 공룡들이 멸종한 것으로 묘사된다.
- 드래곤볼 슈퍼에서는 파괴신 비루스가 공룡을 과거 예전에 자신이 멸망시킨 무례한 종족이라고 언급한다. 어째서 행성 자체를 부수지 않고 공룡만 멸망시켰는지는 불명. 그리고 사실 드래곤볼 세계관에는 공룡들이 여전히 살아 등장한다.[28]
- 레지스탕스 시리즈에서는 지구를 식민지로 삼은 키메라와 다른 적대종족과의 전쟁 중 적대종족이 자신들의 최종병기인 프로메테우스 웨폰(Prometheus Weapon)을 작동시키면서 일어난 일로 묘사된다. 이 일로 키메라는 전쟁에서 패배해 지구를 빼앗겼으며, 시간이 흘러 지구의 주인이 된 인류가 지구를 다시 점령하려는 키메라에게 저항하는 게 본게임의 스토리다.
- 마라톤 트릴로지와 Pathways into Darkness의 세계관에서는 지구에 충돌한 꿈꾸는 신에 의해 일어난 것으로 나온다.
- 슈퍼로봇대전 시리즈에서는 겟타선 때문에 공룡이 멸망했지만, 동시기에 운석이 떨어졌기 때문에 착각되었다.
- 아기공룡 둘리의 시즌 2 Ep.1 '둘리의 분노' 편에서 의외로 공룡의 멸종에 대해서 나레이션으로 언급되고 있다. 공룡이 주인공인 만화이니 어찌보면 당연. 다만 이 애니메이션이 출시된 1980년대에서는 아직 학계에서 운석 충돌설이 정설이 아니던 시절이었기에, 단순히 빙하기로 인해 멸종되었다는 시각을 보여주고 있고, 운석 충돌에 대해서는 언급되지 않았다.
- 엉클 그랜파의 거스는 백악기 대멸종에서 살아남은 공룡이다. 그래서인지 중생대로 돌아오는 꿈을 꿀 때 하는 대사도 "조심해! 운석이 오고 있어!"다.
- 용자왕 가오가이가에서는 초룡신이 운석을 밀고 과거로 시간여행을 한 결과로 K-Pg 멸종이 일어난다. 다만 이게 과거의 역사를 개변한 것은 아니고, 닭과 달걀 중 어느 쪽이 먼저인가와 같은 타임 패러독스가 일어난 것이다. 패계왕 52화에서 밝혀진 가오가이가의 세계관은 이미 존재하는 역사를 개변할 수는 없으나 다른 역사로 세계선을 분기 시킬 수는 있다라는 입장을 취하기 때문.[29]
- 개구리 중사 케로로에선 공룡 시대에 퍼렁별 침략을 온 케론군이 침략을 위해 설치한 키루루에 의해 공룡들이 이상 진화를 일으키고 역으로 지구를 거점으로 온 우주를 침략하려고 하자 앙골족에 묵시록으로 멸종 당한다.
- 트랜스포머: 사라진 시대에서는 쿠인테슨으로 추정되는 외계인들이 트렌스포뮴 채취를 위해 공룡들을 통째로 트랜스포뮴이라는 금속으로 변형시킨 것으로 나온다.
- 폭룡전대 아바레인저에서는 이 충돌로 인해 지구가 어나더 어스[30]와 다이노 어스[31]라는 두 개의 평행세계로 분리되고, 다이노 어스에선 비조류 공룡들이 멸종하지 않고 폭룡이라는 강력한 메카로 진화하게 된다. 그리고 이 운석에 들어 있었던 것은....
- Have a Nice Death에서는 사신이자 죽음 주식회사의 회장인 데스가 백악기 시절 지구에서 공룡을 포함한 고대 생물들이 너무 많이 살고 있는 바람에 우주의 균형을 맞추는 일에 어려움을 겪고 있었는데 소로우 캐서린 이마무라가 자신의 능력으로 지구에 태양풍과 운석을 날려 공룡을 멸종시켰고, 데스에게 공을 인정받아 죽음 주식회사의 임시 계약직에서 정규직으로 전환되었다.
- Fate 시리즈에서는 이 외계 천체의 충돌과 함께 외계의 박테리아 같은 생명체가 지구에 도착, 케찰코아틀을 포함한 중·남아메리카의 신성이 되었다고 언급되며, 한편으로 이 소행성의 정체가 ORT라는 추측도 있었는데 이는 Fate/Grand Order 메인스토리 2부 7장에서 어떤 의미로는 사실임이 드러난다. 다만 이는 이 이문대 한정이며, 구 설정이 변하지 않았다고 가정시에는 ORT는 전혀 무관하게 된다.
- Warhammer 40,000의 네크론의 구판 설정에서는 인슬레이버가 나타나 네크론을 몰아낸 시기가 지구의 백악기 대멸종이 일어난 시기라고 언급된다.
- X-COM: Terror from the Deep(구판 X-COM 2)에서는 최종미션지역 외계도시 티레스가 지구를 식민지화 하려고 오던 식민선이었는데 태양 플레어에 항법장치가 고장나서 추락해서 백악기 대멸종이 일어났다고 하는 설정이다.
- 65(영화)의 배경이다.
- 신기한 스쿨버스 6: 공룡 시대로 가다에선 공룡시대 현장학습 막바지에 운석이 떨어지는데, 프리즐 선생님은 별상관 없듯이 운석이 떨어지고 이후 일어나는 변화에대해 설명을 하고 학생들은 운석 맞기전에 원래 시간대로 돌아갈수 있냐며 불안해하며 묻는 장면이 있다.
- 굉굉전대 보우켄저에서는 극장판의 보물이자 흑막에 의해 멸종되었다고 한다.
- 냥코 대전쟁에서는 이벤트 보스 고대 사이클론에 의해 멸종되었다고 언급된다.
- 창팝에서는 공룡 대멸종을 불러 일으킨 것이 리선족이라고 언급된다.
하지만 가장 끔찍했던 참사 감히 입에도 담을 수 없는 그들의 행동 그들의 메 벤 도 배 7 7 억 페 이 지
[1] 조류 제외[2] 흔히 BCE 6,500만 년경이나 중간값인 기원전 6,550만 년경으로 알려져 있지만, 국제 층서위원회(ICS)의 2015년 1월판 표에는 BCE 6,600만 년경으로 확인된다.[3] 백악기의 영어 첫 글자인 C를 사용하지 않은 것은, C로 시작하는 시기가 이미 너무 많았기 때문이다. 캄브리아기, 석탄기 등.[4] 지질학 국제 위원회(International Commission on Stratigraphy)[5] 본래 신생대를 제3기/제4기로 나누는 것은 과거 층서학이 충분히 발달하기 전에 고생대를 제1기, 중생대를 제2기로 부르던 시절의 연장선상에서 붙여진 이름이기 때문이다.[6] 쿠르츠게작트의 영상.[7] 사실 암모나이트는 엄밀히 말해서 화석 기록상 신생대 극초기까지는 남아있었으나 금세 사라졌기에 대멸종으로 인해 영향을 받기는 했어도 당시에 완전히 절멸된 것은 아니었다.[8] 이미 이때부터 현생 악어의 조상들은 정온 동물에서 다시 변온 동물로 돌아와 있었다고 한다. 아마 살아남은 것도 냉혈 파충류답게 먹이의 전반적 부족함에 매우 오랫동안 잘 버틸 수 있었기 때문이 아닌가 한다고.[9] 사실 포유류도 상당한 피해를 보기는 했다. 다만 피해를 입은 것은 태반류가 아닌 유대류와 다른 비태반 포유류이다.[10] 초반의 시끄러운 소리를 주의하자.[11] 얼마나 세냐면 인류가 발명한 가장 강력한 대량살상무기 차르 봄바의 9,000,000배다. 이는 450테라톤이라는 어마어마한 위력이다.[12] 중력 지도에서 중력이 높은 곳은 붉은색으로 나오는데, 암석질이 많아 질량이 무거울 수록 중력이 높게 측정된다. 크레이터의 테두리에는 암석들이 밀려나 압축된 곳이 형성되므로 이렇게 붉은 테두리가 나타나게 된다.[13] 현재까지 발견되고 인정된 운석공 중에서 3번째로 크기도 하다. 1등은 지름 300 km에 달하는 남아프리카 공화국의 브레드포트 돔(Vredefort crater), 2등은 지름 250 km인 캐나다 서드베리 분지(Sudbury Basin)이다.[14] 석형류는 포유류보다 종 수가 훨씬 많기 때문에 진화 가능성이 무궁무진하다.[15] 소행성의 지름이 아님에 주의하자. 소행성 크기가 200km였으면 멸종의 규모는 페름기때 보다도 훨씬 컸을 것이다. 이것보다 2.5배 더 큰 500km 정도만 해도 지구 전역을 금성처럼 만들어 버린다.[16] Glauconite, 바다 속에서 장기간에 걸쳐 생성되는 녹색 광물[17] Gerta Keller, 2008, Cretaceous climate, volcanism, impacts and biotic effects. Cretaceous Research, v.29, p.725-753.[18] 현재는 간빙기 시대로 지구의 지질시대 전체 평균적으로는 좀 낮은 온도인 시기이다.[19] 2019년 기사다. 이미 한참 전에 논파된 가설임에도 새로 등장한 가설인마냥 설명하고 있다. 심지어 기자가 잘 몰랐던 건지, 출처가 그 유명한 영국의 악질 찌라시인 더 선이라고 기사 앞부분에 당당히 적어놓고 있다.[20] 어룡과 플리오사우루스류의 경우 세노마눔절-투로니아절 대멸종으로 인해 사라졌다.[21] 여담으로 분류상 조익류(Avialae)에 속한 현생 조강(Aves)은 백악기 막바지에 처음으로 출현하였다.[22] 현존 포유류들은 대부분 햇빛에 의한 DNA 손상 복구 기작이 퇴화했는데#, 대멸종으로 땅굴 속에서 살던 포유류만 살아남았기에 이 포유류들이 다시 지상으로 진출하며 생긴 현상으로 추정된다.[23] 다만 현존하는 유대류의 공통조상은 팔레오세 때 처음 등장하였다.[24] 여기에는 뱀도 포함된다. 다만 뱀의 경우 중생대 때 번성했던 계통군 대부분이 사라졌다.[25] 현대 뱀에게 경쟁자를 제거해 줘 종(種) 분화를 촉발하는 '창조적 파괴'였다는 연구 결과가 나왔다.[26] 일부 세베코수키아류 와 디로사우루스과 등을 제외한 나머지 악어형류 계통들도 대부분 멸종하고 악어목 계통들 위주로 살아남았다.[27] 현재는 고도화된 CG로 얼마든지 만들어낼 수 있지만 이 때까지만 해도 특수촬영은 실사 위주였다. 구름을 표현하기 위해 큰 수조에 우유를 잔뜩 붓고 밑에서 촬영한다든가... CG가 영상물에 본격적으로 활용되는 것은 이보다 2년 후인 1990년 터미네이터 2, 미녀와 야수(애니메이션), 그리고 그 유명한 쥬라기 공원(1993)부터이다.[28] 아마 비루스에게 공룡은 겨우 덩치 큰 짐승에 불과하기 때문에 적당히 끝내준 모양. 사실 공룡이 좀 짜증나게 했다고 별을 파괴하는 것은 비루스가 정한 파괴의 기준(우주의 밸런스를 붕괴시키거나 사악한 존재)에서 어긋나기도 하고, 그렇다고 일일이 찾아다니며 멸종시키는 것은 대단히 귀찮은 일이니....... 그도 아니면 기란 같은 고도의 지성을 갖춘 종족이 비루스에게 빌었거나.[29] 즉, 미래의 존재가 과거에 간섭하는 순간, 미래의 존재가 출발한 세계선과 별개의 세계선으로 세계선이 분기된다. 또한 과거에 간섭한 존재가 미래로 돌아가게 될 경우, 그 미래는 자신이 출발한 미래가 아니라 개변된 세계선의 미래가 되게 된다. 이 관점에서 보면, 초룡신이 운석을 밀어내다가 힘을 다하며 과거로 날려진 덕분에 아무것도 하지 못하고 바다에 빠졌고, 그 결과 과거가 변하지 않아서 원래의 세계선의 지층으로 돌아올 수 있었다는 소리가 된다. 실제로 과거를 개변한 데우스를 거부한 베터맨들이 데우스가 일으킨 개변의 영향을 관측되지 않도록 완벽하게 전자기기의 관측, 현장 인물들의 기억에서 정성스럽게 소거해서 원래 세계선으로 돌아올 수 있었다.[30] 우리가 사는 현실의 지구[31] 폭룡들과 아스카, 마호로 등 용인들이 사는 또 하나의 지구[32] 운석도 지구를 걍 스쳐 지나갔다는 설정이다.