나무모에 미러 (일반/밝은 화면)
최근 수정 시각 : 2025-06-29 17:59:46

0의 0제곱

연산
Numbers and Operations
{{{#!wiki style="margin: 0 -10px -5px; min-height: calc(1.5em + 5px)"
{{{#!folding [ 펼치기 · 접기 ]
{{{#!wiki style="margin: -5px -1px -11px"
<colbgcolor=#765432> 수 체계 자연수(수학적 귀납법 · 홀수 · 짝수 · 소수 · 합성수) · 정수 · 유리수(정수가 아닌 유리수) · 실수(무리수 · 초월수) · 복소수(허수) · 사원수 · 팔원수
표현 숫자(아라비아 숫자 · 로마 숫자 · 그리스 숫자) · 기수법(자연어 수 표기법 · 과학적 표기법 · E 표기법 · 커누스 윗화살표 표기법 · 콘웨이 연쇄 화살표 표기법 · BEAF · 버드 표기법) · 진법(십진법 · 이진법 · 8진법 · 12진법 · 16진법 · 60진법) · 분수(분모 · 분자 · 기약분수 · 번분수 · 연분수 · 통분 · 약분) · 소수{유한소수 · 무한소수(순환소수 · 비순환소수)} · 환원 불능 · 미지수 · 변수 · 상수
연산 사칙연산(덧셈([math(Sigma)]) · 뺄셈 · 곱셈(구구단 · [math(Pi)]) · 나눗셈) · 역수 · 절댓값 · 제곱근(이중근호) · 거듭제곱 · 로그(상용로그 · 자연로그 · 이진로그) · 역산 · 검산 · 연산자 · 교환자 · 계승
방식 암산(방식) · 세로셈법 · 주판 · 산가지 · 네이피어 계산봉 · 계산기 · 계산자
용어 이항연산(표기법) · 항등원과 역원 · 교환법칙 · 결합법칙 · 분배법칙
기타 수에 관련된 사항(0과 1 사이의 수 · 음수 · 작은 수 · 큰 수) · 혼합 계산(48÷2(9+3) · 111+1×2=224 · 2+2×2) · 0으로 나누기(바퀴 이론) · 0의 0제곱 }}}}}}}}}

1. 개요2. 극한값
2.1. x의 x제곱의 극한2.2. y의 x제곱의 극한2.3. 무한 번 제곱한다면?
3. 편의상 값을 정의하는 경우4. 바퀴 이론에서의 정의5. 관련 문서

1. 개요

0의 0제곱 즉, 0⁰은 일반적으로 정의되지 않는 값으로, 극한에서 대표적인 부정형 중 하나다.[1]

중, 고교 교육과정에서 배운 지수법칙을 이용하여 아래처럼 부정형임을 증명하는 경우도 있지만, 이는 지수의 뺄셈은 밑이 0일 때 성립하지 않음을 간과한 증명이기 때문에 잘못된 증명이다.

[math(\displaystyle 0^0 = 0^{1-1} = \frac{0^1}{0^1} = \frac{0}{0})] [2]

복소해석학에서, 두 복소수 [math(z)]와 [math(w)]에 대하여, 일반적으로 지수연산은 다가함수로 정의된다.

[math(z^w)] = [math(e^{w \cdot \log {z}})]

여기서 log가 복소로그함수라서 다가함수로 정의되기 때문인데, 해당 함수의 주치(principal value)만을 이용하여 정의한다고 하더라도 이변수함수이기 때문에, 두 값이 0에 한없이 가까워 질 때, 지수에 해당하는 [math(w \cdot \log {z})]는 [math(w)]와 [math(z)]의 관계에 따라 값이 다양하게 정의되는 [math(0 \times ∞)]꼴의 부정형이 된다. 즉, [math(0^0)]을 어떠한 값으로 정의하더라도, 모든 방향에 대하여 [math(z^w)]가 연속인 함수가 되게 하는 복소수가 존재하지 않는다.

참고로 [math(0^z (\rm Re(z)<0))]는 일반적인 복소수 범위에서는 해가 존재하지 않는다. 다만 확장된 복소수에서 [math(0)]의 역수를 [math(\tilde {∞})]로 정의할 수 있는데, 해당 계산식은 [math(z)]의 실수부가 음수라면 허수부에 상관 없이[3] 항상 해당 값을 갖는다. 참고로 일반적인 양의 무한대∞와 같이 방향이 있는 무한대(directed infinity)로 정의되지 않는데, 이는 [math(0)]의 방향이 정의되지 않기 때문에 이의 역수에 해당하는 [math(\tilde {∞})] 역시 방향을 정의할 수 없기 때문이다. 즉, 해당 수의 부호나 실수부, 허수부를 구하는 함수를 씌우면 값이 정의되지 않는다.

2. 극한값

2.1. x의 x제곱의 극한

[math(0^0)]꼴의 부정형 [math(x^x)]는 다음처럼 우극한으로 나타낼 수 있다.


[math(\displaystyle 0^0=\lim_{x \to 0^{+}} x^{x} )]

자연로그로 식을 다시 쓰면

[math(\displaystyle x^x = e^{\ln x^x} = e^{x\ln x} )]

이고, [math(x\equiv t^{-1} )]로 잡으면 [math(x\to0^+)], [math(t\to\infty)]가 되므로

[math(\displaystyle \lim_{x\to0^+} x^x = \lim_{t\to\infty} \exp \biggl( -\frac{\ln t}t \biggr) )]

이다. 이때, 지수의 극한값이 존재하므로 로피탈의 정리에 의해

[math(\displaystyle \lim_{t\to\infty} \biggl( -\frac{\ln t}t \biggr) \xlongequal{\textsf{l'H\^opital}} \lim_{t\to\infty} \biggl( -\frac1t \biggr) = 0)]

이 됨에 따라

[math(\displaystyle \lim_{x\to0^+} x^x = e^0 = 1)]

이 된다.

복소로그함수를 이용하면 좌극한은 물론 일반적인 복소극한도 생각할 수 있다.

[math(\displaystyle\lim_{z\to0}z^z=\lim_{z\to0}\exp(z\operatorname{Log}z)=\exp\left(\lim_{z\to0}z\operatorname{Log}z\right)=1)]

여기서 [math(\rm Log)]은 편각을 [math([0,2\pi))]로 제한한 복소로그함수이다.[* 이런식으로 치역의 편각을 [math(2\pi)] 기준으로 제한하는 것을 분지절단이라고 한다. 주로 [math([0,2\pi))]를 쓰지만 [math([a,a+2\pi))] 아무거나 써도 큰 문제가 생기지는 않는다. 심지어 [math(z \operatorname{Log} z)]는 편각을 어떠한 값을 고르더라도 0에 수렴하기에 [math(z^z)]는 분지절단을 하지 않더라도, 어떠한 방법으로도 1에 수렴한다.]

보통 부정형 [math(0^0)]의 값을 [math(1)]로 정의하는 이유가 바로 이것이다. [math(f(x)^{g(x)})]꼴의 식에서 밑과 지수 모두 [math(0)]에 가까워질 때, 밑을 [math(e)]로 치환한 함수의 지수에 해당하는 [math(g(x) \ln f(x))]의 값에 따라 어느 값에 수렴하는지가 정해지는데, 둘다 상수함수가 아닌 유한차 다항식의 꼴이라면 로피탈의 정리에 의해 항상 1에 수렴할 수밖에 없다. 만약 [math(g(x))]가 [math(x)]에 대한 유한차 다항식인 경우 해당 식의 극한값을 의미있게 변경하기 위해서는 자연로그가 붙어있기 때문에 [math(f(x))]가 최소한 [math(\frac{1}{x})]에 대한 지수함수 이상의 수렴속도를 가져가야 한다.[4]

따라서 일변수 함수 중에서도 밑이 지수함수의 모양을 갖춘 경우 [math(0^0)]꼴의 부정형도 사실상 [math(0 \times ∞)]꼴처럼 다양하게 값이 정해진다. 이를테면, 다항식끼리의 지수연산에서 극한값은

[math(\displaystyle \lim_{x\to0} x^x = e^0 = 1)]

이지만, 밑이 지수함수인 경우, 지수법칙에 의해 곱셈식처럼 변하여


[math(\displaystyle \lim_{x\to0^+} (e^{-\frac{1}{x}})^x = \lim_{x\to0^+} e^{-\frac{1}{x}\cdot x} = e^{-1} = \frac{1}{e})]



[math(\displaystyle \lim_{x\to0^-} (e^{\frac{1}{x}})^x = \lim_{x\to0^-} e^{\frac{1}{x}\cdot x} = e^{1} = e)]



[math(\displaystyle \lim_{x\to0^+} (e^{-\frac{1}{x^2}})^x = \lim_{x\to0^+} e^{-\frac{1}{x^2}\cdot x} = \lim_{x\to0^+} e^{-\frac{1}{x}} = 0)]



[math(\displaystyle \lim_{x\to0^-} (e^{-\frac{1}{x^2}})^x = \lim_{x\to0^-} e^{-\frac{1}{x^2}\cdot x} = \lim_{x\to0^-} e^{-\frac{1}{x}} = ∞)]


와 같이 극한값이 굉장히 다양하고, 심지어 같은 함수여도 위와 같이 좌극한과 우극한이 극단적으로 다른 경우도 존재한다.

2.2. y의 x제곱의 극한

그렇다면, 이변수함수 [math(f(x,\,y)=y^x)]은 어떨까? 이는 다음과 같이 생각할 수 있다.

[math(\displaystyle 0^0 = \lim_{(x,\,y)\to(0,\,0)} f(x,\,y) )]

[math(y=0)]이라는 조건에서 이 극한을 생각하면 우극한은

[math(\displaystyle \lim_{x\to0^+} 0^x = 0)]

이 되고, 좌극한은

[math(\displaystyle \lim_{x\to0^-} 0^x = \tilde {∞})]

이 된다. 참고로, 해당 값은 부호에 구애받지 않기 때문에, 복소함수의 경우에는 실수부에만 영향을 받으며, 실수부가 0인 경우에는 아예 정의되지 않는다. 즉, [math(x)]가 실수일 때, 지수가 순허수인 [math(\displaystyle {0^{ix}})]꼴은 극한값 조차 정의되지 않는 것.

반대로 [math(x=0)]이라는 조건을 따라서 생각하면

[math(\displaystyle \lim_{y\to0} y^0 = 1)]

이 된다. 해당 조건은 [math(y)]의 절댓값이 0보다 크다면, 어떠한 복소수에 대해서도 성립한다. 따라서 두 변수의 조건과 극한이 진행하는 방향에 따라 그 극한값이 달라지기 때문에 [math(\displaystyle \lim_{(x,\,y)\to(0,\,0)} f(x,\,y) )]는 정의되지 않게 된다. 같은 이유로 복소함수에서의 극한 [math(\displaystyle \lim_{(z,\,w)\to(0,\,0)} z^w )]도 정의되지 않는다.

따라서 [math(0^0)]꼴의 부정형은 일반적으로는 값을 정할 수 없으며, 극한 계산법에 따라 0, 1, [math(\tilde {∞})] 등 한정할 수 있는 경우도 있지만, 0의 순허수지수와 같은, 극한으로도 값을 한정하지 못하는 경우도 나오기 때문에 굉장히 독특하다고 할 수 있다.

2.3. 무한 번 제곱한다면?

우선 다음을 정의하자.

[math( \overset{n}{\overbrace{a^{a^{\cdots^a}} }}=a\uparrow\uparrow n)]

이를 테트레이션(tetration)이라고 한다. 덧셈, 곱셈, 지수에 이은 4차 연산이라는 의미이다.

그리고 이 연산에서 [math(n)]을 무한대로 보내면 다음과 같이 된다.

[math(\displaystyle \lim_{n\to\infty} a \uparrow\uparrow n = -\frac{W(-\ln a)}{\ln a} )]

여기서 [math(\ln)]은 자연로그, [math(W)]는 람베르트 [math(W)] 함수이다.

이제 [math(a)]에 [math(0)]을 대입해 보자. 여기서 [math(\displaystyle \lim_{x\to0^+} (-\ln x) = \infty)]이고 [math(\displaystyle \lim_{x\to\infty} W(x) = \infty)]이므로 결국 위 극한은 [math(\dfrac{\infty}{\infty})] 꼴의 부정형이 된다.

여기서 부정형의 극한값을 구하기 위해 로피탈의 정리를 적용하면, 최종적으로 무한 번의 [math(0)]제곱은 [math(0)]에 수렴한다는 사실을 얻을 수 있다.

[math(\displaystyle \lim_{a\to0^+} \biggl( -\frac{W(-\ln a)}{\ln a} \biggr)
\xlongequal{\textsf{l'H\^opital}}0)]


하지만 이 방식은, 0의 0제곱이 부정형임을 간과한 것으로, 단순히 0의 0제곱을 무한번 반복한 꼴을 하나의 형태로 정했기 때문에 생긴 오류이며, 실제로 0을 무한번 0제곱한다고 해서 0에 수렴하게 되는 패턴이 발생하진 않는다.

예를 들어 분모에 0이 들어가는 무한 분수식이 있다고 하여 이 값을 하나의 미지수로 정하고 이를 두고 해당 값을 정하는 것과 같은 이치이다. 애초에 연산의 값이 정해지지 않은 연산을 무한 반복한다고 해서 하나의 값으로 수렴하게 되는 경우는 많지 않으며, 부정형의 연산을 무한 반복하여 하나의 값으로 정해지는 케이스는 매우 드물다. 앞서 말한 0의 0제곱을 1로 정의하는 경우만 생각해 봐도, 0의 0제곱을 홀수번 반복하면 1이 나오고 짝수번 반복하면 0이 나오는 진동발산 형태의 수열이 나온다. 물론 0의 0제곱을 0으로 정의한다면 시행 횟수와 상관 없이 해당 성질이 성립한다.

3. 편의상 값을 정의하는 경우

부정형이라 어느 한 가지 값으로 정의되지는 않지만, 공식 등의 일관성을 위해서 [math(0^0)]을 정의하는 경우도 있다. 물론 필요에 의해 정의한 것이기 때문에, 당연히 우리가 아는 수학에서는 [math(0^0)]의 값이 어느 하나로 정해지지 않는다는 점을 확실히 해 두고 다음을 읽자.

프로그래밍 등과 같은 실용적인 분야에선 편의상 [math(0^0=1)]로 놓는 경우가 많으며 [math(0^{-n}=\infty \,(n \in \mathbb{N}) )]로 두는 경우도 많다.

수학 분야 중 집합론에서 자연수를 정의할 때는 [math(0^0=1)]로 정의한다. 자세한 내용은 자연수 문서의 자연수의 거듭제곱 문단 참고.

또한, 정수론에 의해 이산수학이나 수열 등에서 지수가 정수로 한정되는 경우에 한해 밑에 상관없이 0제곱을 한 값을 1로 두는 경우가 많은데, 이런 경우에는 [math(0^0)]은 1로 정의한다. 이렇게 정의하는 경우들에 대해선 여기에서 더 많은 예시를 볼 수 있다.

3.1. 다항식

다항식 [math(f(x) )]를

[math(\displaystyle f(x) = \sum_{k=0}^n a_kx^k )]

의 형태로 표현하고자 할 때, 지수가 이산적인 상황이므로, [math(x)]의 값에 관계없이 [math(x^0=1)]이라 놓으면 편리하다. 그렇기 때문에 다항식을 다룰 때 [math(0^0=1)]이라 정의하는 경우가 많다.[5]

3.2. 지수함수

일반적으로 자연로그의 밑에 대한 지수함수의 정의는 아래와 같이 주어진다.
[math(\displaystyle e^{z} = \sum_{n=0}^{\infty} {{[ \Re(z) ]}^n \over n!} \left( \sum_{k=0}^\infty \dfrac{\left(-1\right)^k {[ \Im(z) ]}^{2k}}{(2k)!} + i \sum_{k=0}^\infty \dfrac{\left(-1\right)^k {[ \Im(z) ]}^{2k+1}}{(2k+1)!}\right))]

그런데 저 급수를 계산하는 과정에서 필연적으로 [math(0^0)]이 나오게 된다. 이때, [math(0^0 = 1)]로 정의하면 잘 정의된다.

3.3. 이항정리

x에 대한 항등식 [math((1+x)^n = {}_{n}{\rm C}_{0}×1^n×x^0 + {}_{n}{\rm C}_{1}×1^{n-1}×x^1... )]에서 x=0을 대입해보면 아래와 같은 등식을 얻게 된다.

[math((1+0)^n = 1 = {}_{n}{\rm C}_{0}×1^n×0^0 + {}_{n}{\rm C}_{1}×1^{n-1}×0^1... )]

이때 [math(0^1, 0^2... )]의 값은 모두 0이므로 2번째 이하의 항의 값은 모두 0이고, 이로 인하여 [math({}_{n}{\rm C}_{0}×1^n×0^0 )]의 값이 1이여야 한다. 이때 임의의 자연수 n에 대하여 [math({}_{n}{\rm C}_{0} = 1^n = 1 )]이므로 00의 값도 1이 되어야 함을 알 수 있다.

3.4. 함수의 개수

두 집합 [math(X)], [math(Y)]에 대하여 각 집합의 원소의 개수를 각각 [math(x)], [math(y)]라 하자. 그런데 만약 두 집합이 모두 공집합이라면, [math(X \to Y)]인 함수는 순서 모음 [math( (\varnothing,\,\varnothing,\,\varnothing) )]으로 단 하나 존재한다. 이런 관점에서 [math(0^0=1)]이라 정의할 수 있다.

그렇기 때문에, 초한기수 문서에도 기재돼 있지만, 기수 0끼리의 지수 연산에서는 [math(0^0=1)]로 정의된다. 기수 역시 자연수의 연장선이라 할 수 있기 때문에, 이산수학적인 성격을 띈다.

3.5. 중복 순열

마찬가지로, 0개에서 0개를 중복을 허락해서 뽑는 경우의 수는 사실상 '그냥 안 뽑는 것' 딱 한 가지이다. 따라서 조합론의 관점에서 곱 규칙(rule of product)에 의해 [math(0^0=1)]이라고 할 수 있다. 사실 중복 순열은 특정 집합의 원소로 이루어진 n-튜플의 개수이므로, 어떤 집합이든 0-튜플은 공집합으로 정의되며 위의 기수의 연산과 마찬가지로 이산수학적인 성격을 띈다.

3.6. 뮌하우젠 수

뮌하우젠 수에서는 [math(0^0=0)]으로 정의한다면 추가적으로 [math(0)]을 포함하여 두 가지의 수가 뮌하우젠 수가 된다.
파일:상세 내용 아이콘.svg   자세한 내용은 뮌하우젠 수 문서
#!if (문단 == null) == (앵커 == null)
를
#!if 문단 != null & 앵커 == null
의 [[뮌하우젠 수#s-|]]번 문단을
#!if 문단 == null & 앵커 != null
의 [[뮌하우젠 수#|]] 부분을
참고하십시오.

3.7. 계산기 프로그램

4. 바퀴 이론에서의 정의

실수와 [math(∞ = 1/0, ⊥ = 0/0)]을 포함하는 바퀴 위의 수 [math(a, b)]에 대하여


[math(\displaystyle {a^b = e^{b \ln(a)}})]


라고 한다면, [math(a = 0, b = 0)]일때 [math(\displaystyle {e^{0 \ln0}= e^{0 \times ∞} = e^⊥})]이다.[6] 따라서,


[math(\displaystyle {0^0 = ⊥})]


이다. 사실 바퀴에서 [math(⊥)]는 부정형과 거의 동일한 의미로 쓰이는 기호이기 때문에 그냥 부정형이라고 보면 된다.

5. 관련 문서



[1] 다른 지수 형태의 부정형으로는 [math(1^\infty)], [math(\infty^0)] 꼴 등이 있다. 모두 자연로그를 이용하여 밑이 [math(e)]인 형태로 치환하면 비슷한 꼴이 된다.[2] 수학자 오일러 역시 밑이 0인 지수꼴을 분수식으로 변경하여 약분한 뒤에 [math(0^0 = 1)]라는 잘못된 결론을 내렸지만 이후에 취소했다.[3] 일반적으로 지수함수에서 허수부는 편각에만 영향을 주는데, 애초에 0의 역수의 편각은 정의되지 않기 때문이다.[4] 해당 이유로, 수학자 뫼비우스 역시 [math(0^0)]의 값을 1로 정의했으나, 정작 [math(f(x))]와 [math(g(x))]를 유한차 다항식으로 한정하지 않아 밑이 지수함수인 반례로 인해 [math(0^0)]을 부정형이라고 인정할 수밖에 없었다.[5] 지수는 0으로 고정이고 [math(x)]의 값만 변하는 극한이라서 1로 고정이라 생각해도 편하다.[6] [math(\ln{0} = -∞)]라고 알고 있겠지만, 해당 대수학에서는 [math(1/0)]를 ∞로 표현한다. 일반적으로 0의 방향은 정의되지 않기 때문에 위에서 말하는 [math(\tilde{∞})]와 같은 의미이다.

분류