평면기하학 Plane Geometry | |||
{{{#!wiki style="margin: 0 -10px -5px; min-height: calc(1.5em + 5px)" {{{#!folding [ 펼치기 · 접기 ] {{{#!wiki style="margin: -5px -1px -11px" | <colbgcolor=#765432> 공통 | 도형 · 직선 (반직선 · 선분 · 평행) · 각 (맞꼭지각 · 동위각 · 엇각 · 삼각비) · 길이 · 넓이 · 다각형 (정다각형 · 대각선) · 작도 · 합동 · 닮음 · 등적변형 · 삼각함수 (덧셈정리) · 접선 · 벡터 | |
삼각형 | 종류 | 정삼각형 · 이등변삼각형 · 부등변삼각형 · 예각삼각형 · 직각삼각형 · 둔각삼각형 | |
성질 | 오심 (관련 정리 · 구점원) · 피타고라스 정리 · 사인 법칙 · 코사인 법칙 · 헤론의 공식 · 신발끈 공식 · 스튜어트 정리 · 우산 정리 · 오일러 삼각형 정리 · 데자르그 정리 · 메넬라오스 정리 · 나폴레옹의 정리 · 체바 정리 · 사영 정리 · 판아우벌 정리 | ||
기타 | 세모 모양 · 평범한 삼각형 · 젤곤 삼각형 · 랭글리 삼각형 · 페르마 점 | ||
사각형 | 정사각형(단위정사각형) · 직사각형 · 마름모 · 평행사변형 · 사다리꼴 · 등변 사다리꼴 · 연꼴 · 네모 모양 | ||
그 외 다각형 | 오각형 · 육각형 · 칠각형 · 팔각형 (정팔각형) · 구각형 · 십각형 · 십일각형 · 십이각형 · 백각형 | ||
원 | 단위원 · 원주율 · 호 · 부채꼴 · 할선 · 활꼴 · 방정식 · 원주각 · 방멱 정리 · 톨레미 정리 | ||
원뿔곡선 | 포물선 · 타원 · 쌍곡선 · 파스칼 정리 | ||
기타 | 유클리드 · 보조선 · 테셀레이션(펜로즈 타일) · 제곱근의 앵무조개 · 픽의 정리 · 논증 기하학 · 해석 기하학 · 3대 작도 불능 문제 | }}}}}}}}} |
1. 개요
方冪定理 / power theorem원의 현, 할선, 접선에 관한 정리를 의미한다. 여기서 방멱이란, 어떤 한 점 [math( \rm{P} )]를 지나는 직선이 어떤 원 [math( O )]와 만나는 점을 [math( \rm A )], [math( \rm B )]라 했을 때, 두 선분의 곱 [math(\displaystyle \overline{\rm PA}\cdot\overline{\rm PB})]를 가리킨다. 보통 방멱 정리 또는 할선 정리, 접선 정리라고 불린다.
방멱 정리는 아래와 같은 3종류가 있다.
- 두 현에 대한 방멱
- 두 할선에 대한 방멱
- 할선과 접선에 대한 방멱
결국 한 점 [math( \rm P )]에 대해 임의의 직선에 대한 방멱이 점 [math( \rm P )]가 반지름 [math(r)]의 원의 중부인지 내부인지, 직선이 원에 접하는지 두 점에서 만나는지에 상관없이
[math(\displaystyle \overline{\rm PA}\cdot\overline{\rm PB}=| {\overline{\rm PO}}^2 - r^2| )]
로 일정하다는 것이다.
이 문서는 원주각 문서의 내용을 방멱으로 모두 이해하고 있다는 가정 하에 작성되었다. 원주각 관련 정보를 모를 경우 해당 문서의 내용을 먼저 숙지하고 와야한다.
2. 종류
2.1. 두 현에 대한 방멱
[math( \overline{\mathrm{PA}} \cdot \overline{\mathrm{PB}}=\overline{\mathrm{PC}} \cdot \overline{\mathrm{PD}} )] |
증명은 아래와 같이 한다.
보조선으로 [math(\overline{\mathrm{AC}})], [math(\overline{\mathrm{BD}})]를 사용한다. 이때,
[math(\displaystyle \angle{\mathrm{CAB}}=\angle{\mathrm{CDB}} \quad)](호 [math(\mathrm{BC})]에 대한 원주각)
이고,
[math(\displaystyle \angle{\mathrm{APC}}=\angle{\mathrm{DPB}} \quad)](맞꼭지각)
이므로
[math(\displaystyle \triangle{\mathrm{APC}} \sim \triangle{\mathrm{DPB}} \quad)]([math(\mathrm{AA})] 닮음)
임을 알 수 있다. 이상에서
[math(\displaystyle \overline{\mathrm{PA}}:\overline{\mathrm{PD}}=\overline{\mathrm{PC}}:\overline{\mathrm{PB}} )]
이것을 정리하면,
[math(\displaystyle \overline{\mathrm{PA}} \cdot \overline{\mathrm{PB}}=\overline{\mathrm{PC}} \cdot \overline{\mathrm{PD}} )]
을 얻는다.
2.2. 두 할선에 대한 방멱
[math( \overline{\mathrm{PA}} \cdot \overline{\mathrm{PB}}=\overline{\mathrm{PC}} \cdot \overline{\mathrm{PD}} )] |
증명은 아래와 같이 한다.
보조선으로 [math(\overline{\mathrm{AC}})], [math(\overline{\mathrm{BD}})]를 사용한다. 이때, [math(\triangle{\mathrm{APC}})], [math(\triangle{\mathrm{BPD}})]에서 [math(\angle{\mathrm{BPD}})]는 공통인 각이고, [math(\square \mathrm{ACDB})]는 원에 내접하므로 [math(\angle \mathrm{PAC})]와 그 내대각 [math(\angle \mathrm{CDB})]는 같다(증명). 따라서
[math(\displaystyle \triangle{\mathrm{APC}} \sim \triangle{\mathrm{DPB}} \quad)]([math(\mathrm{AA})] 닮음)
이고,
[math(\displaystyle \overline{\mathrm{PA}}:\overline{\mathrm{PC}}=\overline{\mathrm{PD}}:\overline{\mathrm{PB}} )]
이 성립하므로 이것을 정리하면,
[math(\displaystyle \overline{\mathrm{PA}} \cdot \overline{\mathrm{PB}}=\overline{\mathrm{PC}} \cdot \overline{\mathrm{PD}} )]
을 얻는다.
혹은, 원에 내접하는 사각형의 성질을 쓰지 않고 삼각형 PAD와 삼각형 PCB가 닮음이란 사실로부터 유도할 수도 있다.
2.3. 할선과 접선에 대한 방멱
[math( {\overline{\mathrm{PT} }}^{2}=\overline{\mathrm{PA} } \cdot \overline{\mathrm{PB}} )] |
사실 이것은 두 할선에 대한 방멱 정리에서 할선의 극한이 접선이라는 사실로부터 예상할 수 있다.
증명은 아래와 같이 한다.
보조선으로 [math(\overline{\mathrm{AT}})], [math(\overline{\mathrm{BT}})]를 사용하자. [math(\triangle{\mathrm{APT}})], [math(\triangle{\mathrm{TPB}})]에서 [math(\angle{\mathrm{APT}})]는 공통이고, [math(\angle{\mathrm{ATP}}=\angle{\mathrm{ABT}})][1]가 성립하므로
[math(\displaystyle \triangle{\mathrm{APT}} \sim \triangle{\mathrm{TPB}} \quad)]([math(\mathrm{AA})] 닮음)
이고,
[math(\displaystyle \overline{\mathrm{PT}}:\overline{\mathrm{PB}}=\overline{\mathrm{PA}}:\overline{\mathrm{PT}} )]
이 성립하므로 이것을 정리하면,
[math(\displaystyle {\overline{\mathrm{PT} }}^{2}=\overline{\mathrm{PA} } \cdot \overline{\mathrm{PB}} )]
을 얻는다.
3. 방멱 정리의 역
피타고라스 정리의 역과 비슷하게 방멱의 정리에도 역이 있다.서로 다른 두 직선 [math(\rm AB)]와 [math(\rm CD)]의 교점 [math( \rm P )]에 대해서 [math( \overline{\rm PA}\cdot\overline{\rm PB}=\overline{\rm PC}\cdot\overline{\rm PD} )]가 성립하면 네 점 [math( \rm A )], [math( \rm B )], [math( \rm C )], [math( \rm D )]는 원 위에 있다. |
이것의 증명은 세 점 [math(\rm A)], [math(\rm B)], [math(\rm C)]가 원 위에 있다고 가정하고[2], 선분 [math(\rm CP)]의 연장선과 원이 만나는 점을 [math(\rm D')]라 하자. 방멱 정리에 의하여 [math( \overline{\rm PA}\cdot\overline{\rm PB}=\overline{\rm PC}\cdot\overline{\rm PD'} )]이 성립한다. 한편, [math( \overline{\rm PA}\cdot\overline{\rm PB}=\overline{\rm PC}\cdot\overline{\rm PD} )] 또한 성립하는데, 두 식을 연립하면 [math(\overline{\rm PD}=\overline{\rm PD'})]이다. 그런데 두 점 [math(\rm D)], [math(\rm D')] 모두 선분 [math(\rm CP)]의 연장선(혹은 해당 선분) 상에 존재하므로 두 점은 같아야 한다는 결론을 얻는다. 따라서 [math( \overline{\rm PA}\cdot\overline{\rm PB}=\overline{\rm PC}\cdot\overline{\rm PD} )]을 만족하면, 네 점 [math(\rm A)], [math(\rm B)], [math(\rm C)], [math(\rm D)]는 한 원 위에 있다.
4. 기타
- 2009 개정 교육과정에서는 "원과 직선에 관한 성질" 혹은 "원과 비례"라는 이름으로 중3 때 다루었으나, 2015 개정 교육과정에 들어 다루지 않게 되었다. 다만 관련 문제는 계속 나온다는 게 함정.