주계열성의 종류 | |||
{{{#!wiki style="margin:0 -10px -5px; min-width:300px; min-height:calc(1.5em + 5px); word-break:keep-all" {{{#!folding [ 펼치기 · 접기 ] {{{#!wiki style="margin:-5px 0 -10px" | 태양 대비 상대 질량 | 온도에 따른 분류 | 분광형 |
<colcolor=#000>0.07 ~ 0.08배M | 1700K ~ 2400K | L형 주계열성·L형 준왜성 | |
0.08 ~ 0.5배 | 2400K ~ 4000K | M형 주계열성·M형 준왜성 | |
0.5 ~ 0.8배 | 4000K ~ 5500K | K형 주계열성·K형 준왜성 | |
0.8 ~ 1.03배 | 5500K ~ 7000k | G형 주계열성·G형 준왜성 | |
1 ~ 1.4배 | 7000K ~ 9000K | F형 주계열성 | |
1.4 ~ 2.1배 | 9000k ~ 15000K | A형 주계열성 | |
2 ~ 16배 | 15000K ~ 20000K | B형 주계열성 | |
15배 ~ 120배 | 20000K ~ | O형 주계열성 | |
* M: 금속 함량에 따라 이 범위 내여도 갈색왜성일 수 있으며, 비확장 분광형에서는 M형으로 간주된다. | |||
}}}}}}}}} |
위 H-R도에서 중앙을 가로지르는 S자 곡선이 주계열성(Main Sequence Star)의 분포이다. |
1. 개요
主系列星 / Main Sequence Star주계열성은 안정적으로 핵융합을 일으키며, 수소를 연료로 소모하는 시기인 "주계열" 상태에 속한 항성이다. 주계열 상태는 항성 일생의 대부분을 차지한다. 만일 새로 태어난 어린 별이 주계열성으로의 성장에 실패하면 갈색왜성이 된다.
주계열 단계는 분광형 뒤에 붙는 알파벳으로 구분할 수 있다. 여키스 분류법에서 주계열성은 분광형 뒤에 V가 붙는다.
주계열 상태는 사람의 인생에 빗대자면 건강한 청장년기 시기로, 연료 역할을 하는 수소가 모두 소진되면 질량에 따라 각각 다른 별들로 변화하며 주계열성 단계를 벗어나게 된다.
2. 상세
2.1. 질량에 의한 온도 결정
주계열성이 결정되는 것은 온도에 따라 결정되나, 이 온도는 질량에 따라 결정된다.주계열성의 색은 빈 변위 법칙(Wiensches Verschiebungsgesetz)을 따른다는 것이 알려져 있다.
질량이 크면 항성의 중심핵 온도도 높아지는데, 이때 핵연료가 고갈되는 과정이 각각 다르다. 예컨대 태양보다 질량이 훨씬 작은 조그만한 적색왜성들은 항성 전체에서 일어나는 대류 현상으로 인해 헬륨 핵을 만들지 못하고 사용 가능한 수소가 고갈되면 청색왜성이 되어 그대로 주계열성에서 벗어나지만, 태양 질량의 25%부터는 헬륨 핵의 형성과 핵 주변에서의 수소 융합이 진행될 수 있으므로 상대적으로 작은 크기의[1] 적색거성으로 팽창할 수 있으며, 태양 질량의 55% 이상의 K형 주계열성들부터는 마침내 헬륨 핵융합에 성공하며 적색거성으로 거대하게 팽창하게 된다.
이보다 더 거대한 항성들은 핵융합으로 산소와 규소까지 만들어내지만, 아무리 질량이 크고 중심핵의 온도가 높은 별이라도 철에 이르면 더 이상 핵융합이 진행되지 않는다. 이는 철에서 더 무거운 원소를 합성하기 위해서는 반대로 에너지를 흡수시켜야 하기 때문이다. 핵융합 반응에서 잿더미와 같은 역할인 것이다.[2]
지금으로부터 약 70억 년 내로 태양 또한 수소가 바닥나 주계열성 상태를 벗어나고 적색거성 단계로 넘어가게 될 것이다. 이때 태양의 부피가 늘어나 광도가 폭발적으로 증가하기 때문에 지구는 더이상 생명체가 존재할 수 없는 행성이 된다.[3]
3. 진화 과정
3.1. 전주계열성(원시 주계열성)
Pre-Main Sequence Star / PMS자세한 내용은 항성 문서 참고하십시오.
전주계열성은 주계열성이 되기 전의 항성으로 이 시점부터 가시광선 파장으로 관측이 가능하다.
3.2. 주계열성
Main Sequence Star이 시기의 항성은 안정적인 수소 핵융합 반응을 일으키기 때문에 내부 압력[4]과 외부 압력(중력)이 평형을 이루어(정유체 평형) 별의 크기와 밝기가 비교적 일정하게 유지된다.
핵융합 반응을 지속하는데 쓸 수 있는 수소[5]가 마침내 바닥나게 되면 중력과 내부 압력 간의 평형이 깨져 주계열성 단계에서 이탈한다. 질량이 클수록 항성의 수명은 짧아지는데 -1.5~-2배 꼴로 감소한다. 태양 질량의 100배가 넘는 O형 항성은 100만~1천만년이라 수명이 매우 짧은 반면, 항성으로 정의하는 조건인 경수소 핵융합을 간신히 진행하는 적색왜성은 800억년~최대 17조 5천억년으로 우주의 역사보다 훨씬 더 수명이 길다.
3.3. 후주계열 단계
Post-Main Sequence수소가 고갈된 중심핵이 수축하기 시작하여 항성은 주계열 단계를 이탈하고 준거성, 거성, 초거성으로 진화하게 된다. 태양 질량의 8%~16%의 질량을 가진 적색왜성은 이미 밀도가 매우 높기 때문에 거성으로 진화하지 못하고 밝기를 올려 청색왜성으로 진화한다.
4. 질량 한계
모든 별들은 내부 복사압과 중력이 평형을 이루는 시점까지 존재할 수 있는데, 이를 에딩턴 한계라고 부른다. 당연하지만 별이 지나치게 거대해 내부에서 생성되는 복사압이 중력보다 강하게 된다면 별은 질량을 주위로 방출하며 에딩턴 한계 밑으로 내려갈 것이다.이는 항성이 함유하고 있는 금속(탄소 이상)의 함유량에 따라 차이를 보인다. 금속은 내부의 밀도 변화에 약간이나마 관여하기 때문에 차이를 보이는 것이다. 이 차이는 큰 차이는 아니지만 천문학에서는 중요하다. 중원소 함량이 많으면 CNO 순환이 일어나기 용이해져서 원시별이 주계열성에 진입하는 시간을 단축시키는데, 주계열성 단계에 도달하면 중심핵에서 양성자-양성자 연쇄반응이 일어나 막대한 복사압을 방출하는데 이 복사압은 항성의 질량을 더 늘릴 성간 매질을 날려버린다.
주계열성의 질량 하한선은 태양과 비슷한 금속 함유량을 가지고 있다면 태양의 7.5%이고 좀 더 많은 금속 함유량을 가지고 있다면 7%까지 내려갈 수 있다. 반면 태양의 1만분의 1의 금속 함유량을 가지고 있다면 태양의 9%까지 올라간다. 극단적으로 금속 함량이 매우 높다면 태양의 4%까지 내려갈 수 있다. 이러한 천체는 수소 핵융합이 일어남에도 표면 온도가 0℃에 불과하여 얼어붙은 별이라는 이름을 가진다. 가설상의 천체로, 우주에 금속이 더욱 풍부해진 먼 미래에만 생성이 가능할 것이다.
질량 상한선도 마찬가지이다. 태양과 비슷한 금속 함유량을 가지고 있다면 태양 질량의 150배까지 가능하지만 태양의 2배의 금속 함유량을 가지고 있다면 103배까지 내려간다. 반대로 태양의 금속 함유량의 절반이라면 200배, 태양의 10분의 1의 금속 함유량을 가지고 있다면 320배까지 가능하고 금속 함유량이 태양의 100만분의 1 이하라면 최대 700배까지도 가능하다.
4.1. 항성 종족 Ⅲ의 별들
초창기 항성종족 Ⅲ의 별들 중 태양 질량의 500배가 넘는 별들도 존재했으며 이들 별은 생을 마치고 거대한 블랙홀[6]들이 생성되었고, 퀘이사와 초기 은하 형성에 기여하였다.종족 Ⅲ의 별들은 금속의 비율이 매우 낮거나 없다시피 해서 CNO 순환[7]으로 "수소→헬륨+에너지" 핵융합이 불가능했다. 따라서 처음에 바로 핵융합이 일어나지 않아, 주변의 먼지와 같은 질량을 추가로 받아들일 수 있는 시간적 여유가 존재해 주계열성 초창기 상태에서 질량이 훨씬 커질 수 있었다. 이들의 평균 질량은 태양의 180~200배나 되었다.
금속 함유량이 전무하고, 태양질량 500배 이상의 초창기 종족 Ⅲ의 별들은 오늘날과는 조금 다르게 핵융합을 했다. 일반적인 A형~M형까지의 핵융합 방식인 PP 반응[8]가 일어나도, 어마어마한 질량과 큰 덩치를 유지하는데에 있어서 중력이 더 강했기에 안정적인 덩치유지와 핵융합이 불가능했다. 결국 항성 중심의 중력에 의해 중심핵이 더더욱 수축(압축)하게 된다. 별이 크기 때문에 중심핵이 끊임없이 수축하여 에너지가 응축되고, 마침내 1억 4천만 도가 넘어가면, 수소 → 헬륨 + 에너지 핵융합이 이루어져 진행되었다. 같은 원리로 한차례 더 나아가, 같은 원리로 항성 중심부에서 헬륨핵에서 핵융합이 이루어져서 탄소핵까지 형성되면, 마침내 CNO 순환이 일어나는 환경이 갖춰진다. CNO 순환이 일어나면서 안정된 핵융합이 이루어지면, 항성은 다시 밝아지고 중심핵도 팽창하게 되어, 중력과 핵융합 에너지 평형이 맞게 되어, 헬륨 융합은 멈추고 원래의 수소 융합을 하는 주계열로 변화한다.[9]
이렇게 초창기 종족 Ⅲ의 별들은 좀 특이하게 핵융합을 한 별들이었다. 일반적인 항성이 주계열성을 지나 적색거성 단계의 핵에서 만들어지는 C(탄소)핵을, 넘사벽 수준의 엄청난 질량과 중력의 힘 덕분에, 주계열성이 되기 전에 만들어서 CNO순환으로 안정적인 주계열성의 단계처럼 입성한 것이다. 물론 질량이 굉장히 큰지라, 태양이 약 100억년동안 주계열성 단계에서 수소핵을 융합하는 것에 비해, 불과 수만~수십만년 안에 수소핵을 전부 소진했을 것이다.
5. 종류
|
주계열성은 O, B, A, F, G, K, M 형으로 분류된다. 보통 영미권에서 Oh Be A Fine Girl Kiss Me[10][ Oh Be A Fine Gay Kiss Me]라는 두문자 암기법을 쓴다. 지1 수험생들은 "우비 아빠 김규(큐)민" , “오븐에 빠진 콧물” 같은 식으로 외운다고 한다. 알파벳 순을 따라가지 않고 이해하기 힘든 분류법이 된 이유는, 원래는 관측되는 수소가 많은 순서로 A~V까지 분류했었는데, 나중에 보니 수소 스펙트럼보다 온도가 훨씬 중요하다는 걸 알게 되어 순서가 바뀌었기 때문이다.
일부 주계열성은 L형 분광형에 속하기도 한다. 그러나 질량 범위가 태양의 7~8% 사이로 매우 좁으므로 흔치 않으며, 비확장 분광형에서는 이들도 M형으로 편입시키는 경우가 흔하다. 상세한 부분은 H-R도, 하버드 분류법, 여키스 분류법 참조.
|
5.1. O형
자세한 내용은 O형 주계열성 문서 참고하십시오.5.2. B형
자세한 내용은 B형 주계열성 문서 참고하십시오.5.3. A형
자세한 내용은 A형 주계열성 문서 참고하십시오.5.4. F형
자세한 내용은 F형 주계열성 문서 참고하십시오.5.5. G형
자세한 내용은 G형 주계열성 문서 참고하십시오.- 태양이 여기에 속한다.
5.6. K형
자세한 내용은 K형 주계열성 문서 참고하십시오.5.7. M 또는 L형
자세한 내용은 적색왜성 문서 참고하십시오.6. 관련 문서
[1] 태양 지름의 수십 배.[2] 핵자 간 결합에너지 순으로 니켈-62, 철-58, 철-56, 니켈-60, 크로뮴-54 순이다.[3] 태양이 적색거성가지의 끝에 도달할 경우 매우 높은 광도 때문에 카이퍼 벨트로 골디락스 존이 이동할 것으로 보인다.[4] 핵융합 반응으로 인한 기체압과 복사압[5] 항성 전체 질량의 10% 정도이나 적색왜성은 자기 질량의 거의 100%를 쓴다.[6] 일반적인 항성의 초신성 폭발 후 생성된 블랙홀의 질량은 태양의 3~4배 수준이지만, 이들이 남긴 블랙홀은 태양의 10~15배나 되었다.[7] 탄소, 질소, 산소가 섞인 핵을 촉매제로 수소 → 헬륨 + 핵융합 에너지 반응. 태양 질량의 1.1배 이상&일정부분 이상 금속함유량 조건하에 적용.[8] 현재 태양의 핵융합 방식으로 알려진 반응. 태양 질량의 1.1배 이하의 항성이 이 방법으로 수소 → 헬륨 + 에너지로 핵융합작용을 한다.[9] 중심핵 내부의 금속 함유량이 태양의 100만분의 1을 초과하게 되면 CNO 순환으로 안정된 핵융합이 가능하다.[10] 한국에서는 Oh, Beautiful And Fine Girl. Kiss Me!'라는 배리에이션도 있다.[11] 위 그림이 태양 주변 별을 대상으로 함을 고려하면, 가장 밝은 G형별 1,2위 리길 켄타우루스와 태양의 위치는 정확히 F형 마지막 줄의 주황 점 2개로 특정될 수 있다.