나무모에 미러 (일반/밝은 화면)
최근 수정 시각 : 2024-09-01 19:38:55

정역학

고전역학
Classical Mechanics
{{{#!wiki style="word-break: keep-all; margin:0 -10px -5px; min-height:2em; word-break:keep-all"
{{{#!folding [ 펼치기 · 접기 ]
{{{#!wiki style="margin:-6px -1px -11px"
<colbgcolor=#614A0A><colcolor=#fff> 기본 개념 텐서(스칼라 · 벡터) · 모멘트 · 위치 · 거리(변위 · 이동거리) · 시간 · 공간 · 질량(질량중심) · 속력(속도 · 가속도) · 운동(운동량) · · 합력 · 뉴턴의 운동법칙 · (일률) · 에너지(퍼텐셜 에너지 · 운동 에너지) · 보존력 · 운동량 보존의 법칙 · 에너지 보존 법칙 · 질량 보존 법칙 · 운동 방정식
동역학 비관성 좌표계(관성력) · 항력(수직항력 · 마찰력) · 등속직선운동 · 등가속도 운동 · 자유 낙하 · 포물선 운동 · 원운동(구심력 · 원심력 · 등속 원운동) · 전향력 · 운동학 · 질점의 운동역학 · 입자계의 운동역학 · 운동 방정식
정역학 강체 역학 정적 평형 · 강체 · 응력(/응용) · 충돌 · 충격량 · 각속도(각가속도) · 각운동량(각운동량 보존 법칙 · 떨어지는 고양이 문제) · 토크(비틀림) · 관성 모멘트 · 관성 텐서 · 우력 · 반력 · 탄성력(후크 법칙 · 탄성의 한계) · 구성방정식 · 장동 · 소성 · 고체역학
천체 역학 중심력 · 만유인력의 법칙 · 이체문제(케플러의 법칙) · 기조력 · 삼체문제(라그랑주점) · 궤도역학 · 수정 뉴턴 역학 · 비리얼 정리
진동 파동 각진동수 · 진동수 · 주기 · 파장 · 파수 · 스넬의 법칙 · 전반사 · 하위헌스 원리 · 페르마의 원리 · 간섭 · 회절 · 조화 진동자 · 산란 · 진동학 · 파동방정식 · 막의 진동 · 정상파 · 결합된 진동 · 도플러 효과 · 음향학
해석 역학 일반화 좌표계(자유도) · 변분법{오일러 방정식(벨트라미 항등식)} · 라그랑주 역학(해밀턴의 원리 · 라그랑지언 · 액션) · 해밀턴 역학(해밀토니언 · 푸아송 괄호 · 정준 변환 · 해밀턴-야코비 방정식 · 위상 공간) · 뇌터 정리 · 르장드르 변환
응용 및 기타 문서 기계공학(기계공학 둘러보기) · 건축학(건축공학) · 토목공학 · 치올코프스키 로켓 방정식 · 탄도학(탄도 계수) · 자이로스코프 · 공명 · 운동 방정식 · 진자(단진자) · 사이클로이드 }}}}}}}}}

1. 소개2. 대학생의 시점에서 본 정역학

1. 소개

/ Statics

정지해 있는 물체의 특성을 연구하는 물리학 과목. 반대되는 과목으로 운동하는 물체의 특성을 연구하는 동역학이 있다.

모든 '역학'의 본질은 결국 뉴턴의 운동법칙(가속도)의 법칙인 [math( F=ma )]에서 출발한다.

여기서 정역학이란 계가 정적으로 평형일 때, 즉 계의 가속도([math(a)])가 0인 상황에서 어떻게 계가 주변, 혹은 그 내부에서 상호작용을 하는지 분석하는 학문이다. 즉, [math(\sum F = 0 (\sum M = 0))] 인 계를 분석하겠다는 것.

설명을 보면 알겠지만, 정역학 자체가 중요하다기보다는, 나중에 고체역학(Solid Mechanics, 혹은 재료역학, 응용역학)을 편하게 도입하기 위한 발판 정도로 생각하면 좋다.

2. 대학생의 시점에서 본 정역학

보면 알겠지만, 한쪽이 0이고 계가 정적이라 스프링, 댐퍼도 없어(즉, 식에 미분항이 없어) 식을 푸는 방법 자체는 이후에 맞닥뜨리게 되는 상황들에 비해 눈물나게 쉽다. 이 때문에 기계공학이나 토목공학 쪽에서는 기본에 속하는 학문이며, 라플라스 변환을 비롯한 공업수학이 필요하지 않기 때문에 주로 1학년 2학기 때 배운다.

중간고사까지는 일반물리학에서 볼 수 있었던 역학 단원과 겹쳐서 비교적 쉽다고는 하지만, 3차원 강체 해석에서 다소 애로사항이 있을 수 있다. 중간고사 이후의 단원들이 다소 어려울 수 있다.
삼각법, 벡터의 합과 차에 대한 작도방법, 삼각법 등이 나온다.
돌림힘은 모멘트(moment)라고도 한다. 커플 모멘트는 크기가 같고 방향이 다른 두 힘은 알고 보면 하나의 모멘트로 해석할 수 있다는 것이다.
FBD(free-body diagram,자유투사도)를 그리고 ΣF = 0, ΣM = 0 두 조건을 만족해서 정역학적 평형이 이루어지는지 본다.
대강 설명하자면, 구조물은 막대와 핀으로 구성되어 있는데, 막대와 핀에 걸리는 힘을 전부 구하는 것이다. 트러스, 프레임, 머신, 케이블 등의 구조가 있다.
막대기와 관절로 구성되어 있다. 모든 막대기는 힘의 평형을 이루고 내부의 힘 2개만 작용한다. 문제를 풀기 의해서는 먼저 전체 구조물을 강체로 보고 reaction을 구한 뒤, 모든 막대기 또는 몇 가지의 막대기가 관절에 작용하는 힘을 구할 수 있다. 이때 사용할 수 있는 방법은 Joint method 와 section method가 있다. 이후 막대기 내부의 힘을 할 수 있다. 관절에 막대기가 작용하는 힘은 막대기 내부 힘과 크기는 같고 방향은 반대이다(작용-반작용.) 막대기 내부 힘은 tension과 compression이 있다.
프레임을 구성하는 물체들은 2가지 이상의 힘이 작용한다. 프레임 전체의 reaction을 구한다. 그 후 각각의 물체에 대해 FBD를 그려야 한다. 머신은 프레임과 비슷하나, 움직일 수 있다.
케이블은 텐션만을 가진다.
어떤 막대에 작용하는 외부 힘이 있을 때, 막대를 구성하는 작은 부분들에 걸리는 전단력과 벤딩모멘트를 구한다. 이것들이 흔히 막대 내부의 어느 한 점에서부터 거리에 따라 달라진다. 그에 따라 거리에 따른 전단력, 벤딩모멘트의 그래프를 그릴 수 있다. 미분과 적분에 대한 기초지식이 필요하다.


[1] 고전역학에서 다루는 '물리'적인 벡터. 주로 2, 3차원 '유클리드 벡터'를 다루며, 선형대수학에서 일반화된 벡터와는 다르다.[2] 마찬가지로 선형대수학에서의 내적보다는 좁은 의미다.