나무모에 미러 (일반/밝은 화면)
최근 수정 시각 : 2024-07-30 18:11:11

조르당 분해

분해 정리에서 넘어옴
선형대수학
Linear Algebra
{{{#!wiki style="margin: 0 -10px -5px; min-height: calc(1.5em + 5px)"
{{{#!folding [ 펼치기 · 접기 ]
{{{#!wiki style="margin: -5px -1px -11px"
<colbgcolor=#006ab8> 기본 대상 일차함수 · 벡터 · 행렬 · 선형 변환
대수적 구조 가군(모듈) · 벡터 공간 · 내적 공간 · 노름 공간
선형 연산자 <colbgcolor=#006ab8> 기본 개념 연립방정식(1차 · 2차) · 행렬곱 · 단위행렬 · 역행렬크라메르 공식 · 가역행렬 · 전치행렬 · 행렬식(라플라스 전개) · 주대각합
선형 시스템 기본행연산기본행렬 · 가우스-조르당 소거법 · 행사다리꼴 · 행렬표현 · 라그랑주 보간법
주요 정리 선형대수학의 기본정리 · 차원 정리 · 가역행렬의 기본정리 · 스펙트럼 정리
기타 제곱근행렬 · 멱등행렬 · 멱영행렬 · 에르미트 행렬 · 야코비 행렬 · 방데르몽드 행렬 · 아다마르 행렬 변환 · 노름(수학)
벡터공간의 분해 상사 · 고유치 문제 · 케일리-해밀턴 정리 · 대각화(대각행렬) · 삼각화 · 조르당 분해
벡터의 연산 노름 · 거리함수 · 내적 · 외적(신발끈 공식) · 다중선형형식 · · 크로네커 델타
내적공간 그람-슈미트 과정 · 수반 연산자(에르미트 내적)
다중선형대수 텐서 · 텐서곱 · 레비치비타 기호 }}}}}}}}}


1. 개요2. 일반화된 고유값과 고유벡터로 이해
2.1. 조르당 분해 계산하기
3. 추상대수학을 이용한 이해
3.1. 제1분해정리, 제2분해정리3.2. 중국인의 나머지 정리와 다항식을 통한 접근
4. 활용

1. 개요

조르당 분해(Jordan decomposition)는 복소수 범위에서는 항상 모든 행렬을 다음의 조르당 블록(Jordan Block)이라 불리는 행렬들의 블록 대각 행렬(block diagonal matrix)들과 닮은꼴로 나타낼 수 있다는 내용이다.
[math(J= \left(\begin{array}{cccccc}\lambda & 1 & & & & \mathbf{0} \\ & \lambda & 1 & & & \\ & & \lambda & \ddots & & \\ & & & \ddots & 1 & \\ & & & & \lambda & 1\\ \mathbf{0} & & & & & \lambda\end{array}\right))] 또는 [math( \ J= \left(\begin{array}{cccccc}\lambda & & & & & \mathbf{0} \\1 & \lambda & & & & \\ & 1 & \lambda & & & \\ & & \ddots & \ddots & & \\ & & & 1 & \lambda & \\ \mathbf{0} & & & & 1& \lambda\end{array}\right))]
비어 있는 곳은 모두 0이다. 상삼각/하삼각행렬 두 형태는 서로 닮음이므로 뭘 쓰는지는 상관없지만 하나로 통일하는 것이 보통이다. 이 문서에서는 첫 번째 형태, 즉 상삼각 형태를 사용하도록 한다.

이러한 형태를 조르당 형식(Jordan form)이라 하며, 각각의 조르당 블록은 (순서를 무시하면) 유일하게 결정된다. 대각화 불가능한 행렬들도 나타낼 수 있을 뿐만 아니라, 복소수 범위 내에서 닮음행렬들을 완벽하게 분류해 줄 수 있다는 의의가 있다. 조르당 블록의 크기는 1*1도 가능하기 때문에, 행렬의 대각화도 조르당 분해의 일종이다.

순수수학적으로 엄밀하게 보면 일반적인 스칼라 체 [math(F)] 위에서의 행렬을 생각할 때, 행렬의 최소다항식이 스칼라 체 [math(F)] 에서 일차식으로 완벽히 분해될 때만 조르당 분해가 존재한다. 대신에 [math(F)]가 대수적으로 닫혀있지 않을 때는 Frobenius normal form 혹은 rational canonical form이라 불리는 형식을 생각할 수 있다. 물론 상황은 비슷해서, 대수적으로 닫힌 체 위에서는 조르당 블록의 구성으로 행렬의 닮음을 완벽하게 분류할 수 있다.

한편 다음과 같이 행렬 혹은 선형사상을 분해하는 것 또한 조르당 분해 혹은 조르당-슈발레 분해(Jordan-Chevalley decomposition)라고 부른다.

[math(\displaystyle A = S + N)]

여기서 [math(S)]은 semisimple한 행렬 혹은 선형사상, [math(N)]은 멱영원이고 [math(SN = NS)]가 성립한다. 이러한 분해는 유일하다. 위의 조르당 형식을 통해 쉽게 찾을 수 있긴 한데, 몇 가지 더 유용한 성질이 더 있고, 이는 아래에서 설명하겠다.

아래에서 조르당 분해에 접근하는 다양한 관점을 서술한다.

2. 일반화된 고유값과 고유벡터로 이해

순수수학 계열이 아닌 많은 선형대수학 교재에는 조르당 분해가 일반화된 고유벡터(generalized eigenvector)의 개념으로 설명된다. 일반적인 고유벡터가 [math((T- \lambda I) v =0)]을 만족하는 [math(v)]였다면, 일반화된 고유벡터는 어떤 정수 [math(k)]에 대해 [math((T- \lambda I)^k v =0)]을 만족하는 벡터를 말한다. 보통 고유벡터는 [math(T- \lambda I)]를 한번만 적용해도 0이 되지만, 일반화된 고유벡터는 여러 번 적용이 필요한 것이다. 이 때 적용이 필요한 최소의 [math(k)], 즉 [math((T- \lambda I)^k v =0)]인 최소의 [math(k)]를 [math(v)]의 차수라 한다.

일반화된 고유벡터 [math(v)]의 차수가 k일 때, 리스트 [math(\{v, (T- \lambda I)v, (T- \lambda I)^2 v, \cdots, (T- \lambda I)^{k-1}v \})]을 조르당 사슬(Jordan chain)이라 부른다. 이 때 [math(v_i = (T- \lambda I)^i v)]라 했을 때 항등식 [math( Tv_i = \lambda v_i + v_{i+1} )] 을 생각하면, 조르당 사슬에 대한 [math(T)]의 행렬은 조르당 블록이 된다는 사실을 알 수 있다. 즉 조르당 분해는 조르당 사슬만으로 이루어진 전체 공간의 기저를 찾을 수 있을까? 하는 문제가 된다.

따라서 이러한 접근에서, 조르당 분해의 구성 증명은 귀납법을 사용하게 된다. 조르당 사슬의 가장 끝 원소는 항상 [math((T- \lambda I)v = 0)]을 만족시키는 일반 고유벡터이다. 따라서 특정 고유벡터를 하나 잡고, 이를 포함하는 최대의 조르당 사슬을 생각하고, 그 조르당 사슬이 생성하는 공간과 직합을 이루는 invariant subspace를 찾으면 되는 것이다. 보통 이는 [math((T- \lambda I))]의 null space(혹은 kernel)와 column space(혹은 image) 이 둘을 적절히 기술적으로 활용하는 과정이 된다.

이 증명 자체는 보통 귀찮다고 여겨지는 부분이 많고, 실제로 본질적이라고 보기는 힘들다. 대신에 이 증명에서 중요한 것은 [math((T-\lambda I)^k)]의 계수(rank)들로 조르당 분해를 결정지을 수 있다는 결과가 된다. 정확히 말하면 [math((T-\lambda I)^k)]의 nullity(kernel의 차원)을 [math(n_k)]라 하면, 크기 [math(k)]인 조르당 블록의 개수는 [math(n_{k+1} - n_{k})]가 된다.

2.1. 조르당 분해 계산하기

이 성질을 활용하여 다음처럼 조르당 분해를 계산할 수 있다. 행렬 혹은 선형사상의 영공간을 [math(N(A))], 영공간의 차원을 [math(n(A))]라 쓰자.
1. 우선 [math(T)]의 특성다항식을 완전히 인수분해한다.
2. 각각의 고유값 [math(\lambda)]에 대해 다음 과정을 반복하여, 조르당 사슬로 이루어진 [math(N((T-\lambda I)^e))]의 기저 [math(\mathscr{B})]를 잡는다. ([math(e)]는 특성다항식에서 [math(\lambda)]의 중복도)
2-1. [math(S=T-\lambda I)]라 놓고, [math(N(S),N(S^2), N(S^3), \cdots,)]를 계산한다. [math(n(S^k)=e)]가 될 때 멈추고, 이 때의 [math(k)]값을 [math(l)]이라 하자.
2-2. [math(\mathscr{B}=\phi)], [math(i=l)]로 시작해 i를 1씩 감소시키며 다음의 과정을 반복한다.
2-2-1. [math( N(S^{i-1}))]의 기저 [math(\mathscr{A}_{i-1})]와 [math( (N(S^i) \setminus N(S^{i-1}) ) \cap \mathscr{B} = \mathscr{B}_{i})]을 구한다.
2-2-2. [math(\mathscr{A}_{i-1} \cup \mathscr{B}_{i} )]를 포함하는 [math( N(S^i) )]의 기저를 생각하고, 이 때 추가된 원소들의 집합을 [math(\mathscr{C_i})]라 하자. 제대로 했다면 [math(\mathscr{C_i})]의 원소의 개수는 [math(n_{i+1} - n_{i})]가 되어야 한다.
2-2-3. [math(\mathscr{C_i})]의 각각의 원소 [math(v)]에 대해, [math(v)]로 시작된 사슬 [math(v,Sv,S^2 v, \cdots, S^{i-1} v)]를 모두 [math(\mathscr{B})]에 추가한다.
2-2-4. i를 1 감소시킨다.
2-3. 최종적으로 얻은 [math(\mathscr{B})]가 조르당 사슬로 이루어진 [math(N((T-\lambda I)^e))]의 기저가 된다. [math(\mathscr{C_i})]의 각각의 원소로 시작하는 사슬은 크기 [math(i)]의 조르당 블록의 기저로 대응이 된다.
3. 각각의 고유값에서 얻은 기저를 모두 모은다. 이 기저에 대해 [math(T)]는 조르당 형식으로 나타난다.

물론 조르당 형식만이 필요하다면 기저를 얻을 필요는 없고, [math(n(T-\lambda I)^k)]들만 알아도 된다.

이해를 돕기 위한 바보같은(...) 예시를 하나 들면
[math(T= \left(\begin{array}{cccc}1 & 1 & 0 & 0 \\0 & 1 & 0 & 0\\0 &0&1&0\\0&0&0&2 \end{array}\right) )]
1. [math(p(\lambda) = (\lambda-1)^3 (\lambda-2))].
2-1. [math(\lambda = 1)]에 대해서 [math(S= \left(\begin{array}{cccc}0 & 1 & 0 & 0 \\0 & 0 & 0 & 0\\0 &0&0&0\\0&0&0&1 \end{array}\right) )]이고, [math(n(S)=2, n(S^2)=3)]이다. [math(e=3)]이었으므로 여기서 멈추고, [math(l=2)].
2-2. [math(i=2)]부터 시작한다.
2-2-1. [math(i=2)]일 때: [math(N(S))]의 기저 [math( e_1, e_3)]에 아직 공집합인 [math(\mathscr{B}_{i})]를 더한다. 여기에 [math(e_2)]을 추가해야 [math(N(S^2))]가 되므로, [math(\mathscr{C_2}= \{e_1\})]. [math(e_1)]으로 생성되는 사슬 [math(e_1, e_2)]를 [math(\mathscr{B})]에 추가한다.
2-2-1. [math(i=1)]일 때: [math(N(S^0))]은 [math(N(I)=\{0\})]으로 간주한다. [math(\mathscr{B}_{1}= \{e_1\})]이 되므로, 여기에 [math(e_3)]을 추가해야 [math(N(S))]가 되므로 [math(\mathscr{C_1}= \{e_3\})]. [math(e_3)]으로 생성되는 사슬 [math(e_3)]을 [math(\mathscr{B})]에 추가하고, 여기서 종료.
2-3. [math(\mathscr{B}=\{e_1,e_2,e_3\})]이 [math(N((T-I)^3))]의 원하는 기저이다.
2-1. [math(\lambda=2)]에 대해서 [math(n(S)=1)]이고, [math(e=1)]이었으므로 [math(l=1)].
2-2. [math(i=1)]에 대해서만 적용하여도 된다. [math(N(S))]의 기저 [math(e_4)]가 [math(\mathscr{B})]에 추가되고 끝난다.
2-3. [math(\mathscr{B}=\{e_4\})]이 [math(N(T-2I))]의 원하는 기저이다.
3. 2-3에서 얻어진 [math(\mathscr{B})]들을 모두 모은 [math(\{e_1,e_2,e_3,e_4\})]가 조르당 사슬로 이루어진 기저이며, 이 기저에 대해 [math(T)]는 조르당 폼으로 나타난다.

일반적인 경우를 손으로 계산해 보면 상당히 귀찮으므로, 대학교 과제/시험 정도를 제외하면 주로 컴퓨터의 도움을 많이 받게 될 것이다. 상용 프로그램이 없으면 Wolfram Alpha에서 'Jordan normal form calculator'를 검색해 이용하자.
위 방법을 따라가 조르당 분해의 존재성을 증명하는 것도 가능하긴 하지만, 다만 [math(N((T-\lambda I)^e))]의 기저들을 모두 모았을 때 전체 공간의 기저가 된다는 사실은 따로 증명해야 한다.

3. 추상대수학을 이용한 이해

PID 위의 유한생성 가군의 기본정리를 통해 이해할 수 있다.[1]

이 간결한 사고방식은 우선 [math(F)]-벡터 공간 [math(V)]를 [math(F\left[x\right])]-가군으로 이해하는 것에서 시작한다. 선형변환 [math(T)]가 주어져 있을 때 작용 [math(F\left[x\right]\rightarrow Hom(V,V))]을 [math(x\mapsto T)]로 부여하는 것이다. 그리고 [math(V)]에 PID 위의 유한생성 가군의 기본정리를 적용하는 것이다.

[math(T)]의 최소다항식이 존재하므로 [math(V)]는 torsion module이므로, PID 위의 유한생성 가군의 기본정리의 elementary divisor decomposition을 생각하면
[math( V \cong \bigoplus F\left[x\right]/(p_i(x))^{r_i} )]
의 형태로 쓸 수 있다. 기약다항식 [math(p_i(x))]들은 모두 최소다항식의 약수이고, 따라서 만약 [math(T)]의 최소다항식이 일차식들로 분해가 된다면 [math(p_i(x))]들도 일차식이어야 한다. [math(p_i(x)=x-c_i)]라 놓자.

이제 여기서 포인트는 조르당 블록은 사실 [math(x)]가 [math(F[x]/(x-c)^r)]에 작용할 때의 행렬이라는 것이다. 더 정확히 말하면 기저 [math(\{1, (x-c), \cdots, (x-c)^{r-1} \})]를 잡았을 때 [math( x \cdot (x-c)^k = c(x-c)^k + (x-c)^{k+1} )] 을 관찰하면, [math(F[x]/(x-c)^r)] 위에서 [math(x)]의 곱셈을 위 기저에 대한 행렬로 나타내면 조르당 블록이 됨을 알 수 있다. 이들의 직합이 전체공간이므로 조르당 분해가 바로 따라나오고, 한편 [math((c_i, r_i))]들의 순서쌍이 유일하게 결정되므로 조르당 분해도 유일함을 알 수 있는 것.

한편 PID 위의 유한생성 가군의 기본정리에서 대신 Invariant factor들을 생각한다면,
[math(V \cong \bigoplus \left(F\left[x\right]/\left(a_{i}\right)\right), \quad a_{i}\mid a_{i+1})]
로 나타낼 수 있다. 다항식 [math(a(x) = x^{n}+\sum b_{i}x^{i})]에 대해서, [math(F[x]/(a(x)))] 위에서 [math(x)]의 작용은 기저 [math(\{1, x, x^2, \cdots, x^{n-1} \})]에 대해, 동반행렬(companion matrix)이라 불리는 다음의 행렬
[math(C_{a(x)} =\left(\begin{array}{cccccc}0 & & & & & -b_{0}\\1 & 0 & & & & -b_{1}\\ & 1 & 0 & & & -b_{2}\\ & & & \ddots & & \vdots\\ & & & 1 & 0 & -b_{n-2}\\ & & & & 1 & -b_{n-1}\end{array}\right))]
으로 나타난다. ([math(x\cdot x^{n-1} \equiv -{\displaystyle \sum_{j<n}}b_{j}x^{j}(\text{mod } a(x)))] 을 생각하면 알 수 있다.) 이들 동반행렬의 블록으로 전체 행렬을 나타낸 것을 Frobenius canonical form이라 부른다. 이는 [math(T)]의 최소다항식 분해 여부에 전혀 상관이 없이 모든 상황에서 적용될 수 있다.

3.1. 제1분해정리, 제2분해정리

일부 서술 방법에서는 [math(T)]의 최소다항식의 인자들을 생각하고, 이들로 먼저 분해하는 방법을 사용하기도 한다.

먼저 [math(T)]의 최소 다항식, [math(p)]와 그것의 소인수분해 [math(p=\prod p_{i}^{r_{i}})]를 생각하자. [math(W_{i}:=\ker p_{i}^{r_{i}}\left(T\right))]라 하면, 다음이 성립하고, 첫 번째 분해방식을 제1분해(primary decomposition)이라 부르는 것이다.
* [math(V={\displaystyle \bigoplus_{i}}W_{i})]
* [math(\left.T\right|_{W_{i}})]의 최소 다항식은 [math(p_{i}^{r_{i}})]이다.
이 primary decomposition의 증명에서는 [math(T)]의 특성 다항식의 인자들도 [math(p_{i})]가 되어야 한다는 것이 따라나오고, 따라서 특성 다항식에 대해서도 같은 작업을 할 수 있다.

최소다항식이 [math(p_{i}^{r_{i}})]인 공간(위의 [math(W_{i})])들을 invariant subspace들로 완벽히 분해하는 것을 제2분해정리(cyclic decomposition)이라 부른다. 정확히 말하면 최소다항식과 특성다항식이 [math(p_{i}^{r'_{ij}})]로 동일한 invariant subspace들을 cyclic subspace (일종의 'irreducible' invariant subspace로 생각할 수 있다)라 부르고, 이들의 직합으로 전체공간을 유일하게 나타낼 수 있다는 것이 제2분해정리이다.

제1분해정리는 베주 항등식 성질만을 이용해 비교적 초등적으로 증명할 수 있지만, 제2분해정리는 PID 위의 가군정리를 이용하거나 이에 준하는 상당한 노동이 필요하다. 둘의 증명을 이러한 식으로 나누어 놓는 서술도 많은 편인데, 조르당 분해의 증명에서거나 아니면 원본인 PID 위의 가군정리나 사실상 제2분해정리가 핵심적인 부분이기 때문.

3.2. 중국인의 나머지 정리와 다항식을 통한 접근

조르당(-슈발레) 분해를 다른 방식으로 유도하면서 매우 독특한 성질들 또한 유도해낼 수 있다.[2] 먼저 [math(T \in L(V))]라고 하자. (물론 [math(V)]는 유한 차원 벡터 공간이다.) 그리고 주어진 체가 perfect하고 대수적으로 닫혀 있다고 가정하자. 그러면 최소다항식 [math(m_T(t))]를 찾을 수 있을 것이고, 이건 [math(m_T(t) = \prod_{i = 1}^m (t - a_i)^{r_i})] ([math(a_i)]: 스칼라, [math(r_i)]: 양의 정수])와 같이 분해할 수 있을 것이다. 이제 중국인의 나머지 정리를 통해 다음을 만족하는 다항식 [math(s_T(t))]를 찾을 수 있다.

[math(\displaystyle s_T(t) \equiv 0 \;\; (\textrm{mod }t))],[3]
[math(\displaystyle s_T(t) \equiv a_i \;\; (\textrm{mod }(t - a_i)^{r_i}))] for all [math(i)].

이제 위에서 정의했던 것과 같이 [math(W_{i} = \ker (T - a_i 1)^{r_i})]라고 하자. 그러면 위 정의에 의해 모든 [math(i)]에 대하여 다음을 얻는다.

[math(\displaystyle s_T(T)|_{W_i} = a_i 1_{W_i})].

이 결과로부터 다음을 얻을 수 있다.

[math((s_T(T) - a_1 1)(s_T(T) - a_2 1) \cdots (s_T(T) - a_m 1) = 0.)]

또는 [math(u(t) = (t - a_1)(t - a_2) \cdots (t - a_m))]이라고 했을 때, [math(u(s_T(T)) = 0)]을 얻는다는 것이다. 따라서 [math(s_T(T))]는 semisimple이다.

한편, 또다른 다항식 [math(n_T(t) = t - s_T(t))]을 생각할 수 있다. 이때 모든 [math(i)]에 대하여 다음이 성립한다.

[math(\displaystyle n_T(t)^{r_i} = (t - s_T(t))^{r_i} \equiv (t - a_i)^{r_i} \equiv 0 \;\; (\textrm{mod }(t - a_i)^{r_i}))].

따라서 모든 [math(i)]에 대하여 다음이 성립한다.

[math(\displaystyle (n_T(T)|_{W_i})^{r_i} = 0)]

이제 [math(r_i)]들 중 최대값을 [math(r)]이라 하자. 그러면 위로부터 다음이 성립한다.

[math(\displaystyle n_T(T)^r = 0)].

따라서 [math(n_T(T))]는 멱영원(nilpotent element)이다. 결국 다음을 얻는다.

[math(\displaystyle T = s_T(T) + n_T(T))].

이때 [math(s_T(T), n_T(T))] 둘 다 [math(T)]의 다항식이므로 [math(s_T(T) n_T(T) = n_T(T) s_T(T))]가 성립한다. 정확히 우리가 원하는 조르당-슈발레 분해가 나왔다.

마지막으로 조르당-슈발레 분해의 유일성을 검토해 보자. 이를 위해 [math(T = S + N)]이고 [math(SN = NS)]인 semisimple [math(S)]와 nilpotent [math(N)]을 생각해 보자. 그러면 물론 [math(ST = TS)], [math(NT = TN)]이고 따라서 [math(S s_T(T) = s_T(T) S)]이고 [math(N n_T(T) = n_T(T) N)]이 성립한다. 이로부터 첫째, [math(s_T(T))]와 [math(S)]가 동시에 대각화가능(simultaneously diagonalizable)하고 따라서 [math(S - s_T(T))] 역시 대각화가능, 따라서 semisimple하며, 둘째 [math(n_T(T) - N)]이 멱영원인 것이다.[4] 따라서 [math(S - s_T(T) = n_T(T) - N)]은 semisimple함과 동시에 멱영원이다. 이러한 원소는 당연히 0 뿐이며, 결국 [math(S = s_T(T))], [math(N = n_T(T))]임을 얻게 된다.

한편 대수적으로 닫힌 체 위에서 모든 걸 다루었는데, 사실 대수적으로 닫혀 있지 않은 체 위에서도 위 결과는 성립한다. 먼저 원래 주어진 체를 [math(k)]라고 표기하자. 이제 [math(m_T(T))]가 완전분해될 때까지 체를 확장하고 생각해 보자. 이때 [math(s_T(t))]의 정의에 따라 [math(k)]에 대한 켤레들끼리의 그 어떤 교환에도 [math(s_T(t))]가 그대로 유지된다는 것을 알 수 있다. 이는 사실 [math(s_T(t))]가 [math(k)] 위의 다항식으로 써질 수 있음을 시사한다. 물론 [math(n_T(T))] 역시 마찬가지. 한편 유일성 증명에서도 대각화가능성을 썼는데, 필요한 건 [math(S - s_T(T))]가 semisimple하다는 사실 뿐이고, 적당한 체의 확장을 이용해 대각화가능함을 보이는 식으로 semisimplicity를 보인 다음 그 체의 확장을 잊어버려도 상관 없기에 유일성 역시 주어진 체가 무엇이든 (perfect하기만 하면) 항상 성립한다는 것을 알 수 있다.

결국 조르당-슈발레 분해가 유일하게 존재하며 각 파트가 [math(T)]의 다항식이라는 것을 보였다. 이 다항식이라는 사실이 종종 쓰이곤 한다. 특히 이 다항식의 상수항이 0임을 주목하자. [math(s_T(t))]를 위한 조건들 중 첫번째 조건에 의한 것인데, 사실 이게 없어도 지금까지의 결과를 이끌어내는 데에 전혀 문제는 없지만 이 부가적인 성질이 다음 성질들을 시사한다는 점에서 유용하다.
[math(T)]-invariant한 부분공간은 또한 [math(s_T(T))]-invariant하고 [math(n_T(T))]-invariant하다.
[math(V)]의 어떤 부분공간 [math(W)]에 대하여 만약 [math(T \in L(V, W))]이면 [math(s_T(T), n_T(T) \in L(V, W))]이다.

4. 활용

상사인 행렬을 완벽히 분류하는 것 외에도, 조르당 분해는 행렬의 계산을 쉽게 하고 싶을 때 사용된다. 대표적으로 행렬의 n제곱을 구하거나 행렬 지수를 계산할 때. 크기 [math(k)]인 조르당 블록의 n제곱과 지수 계산은 다음과 같이 비교적 간단히 계산된다.

[math( J^n = \left(\begin{array}{cccccc} \lambda^n & \binom{n}{1} \lambda^{n-1} &\binom{n}{2} \lambda^{n-2} & \cdots & \cdots & \binom{n}{k-1} \lambda^{n-k+1} \\ & \lambda^n & \binom{n}{1}\lambda^{n-1} & \cdots &\cdots & \binom{n}{k-2} \lambda^{n-k+2} \\ & & \lambda^n & \cdots & \cdots & \binom{n}{k-3} \lambda^{n-k+3} \\ & & & \ddots & & \vdots \\ & & & & \lambda^n & \binom{n}{1} \lambda^{n-1} \\ & & & & & \lambda^n \end{array}\right) )], [math( e^{tJ} = e^{t\lambda} \left(\begin{array}{cccccc} 1 & \frac{t}{1!} & \frac{t^2}{2!} & \cdots & \cdots & \frac{t^{k-1}}{(k-1)!} \\ & 1 & \frac{t}{1!} & \cdots &\cdots & \frac{t^{k-2}}{(k-2)!} \\ & & 1 & \cdots & \cdots & \frac{t^{k-3}}{(k-3)!} \\ & & & \ddots & & \vdots \\ & & & & 1 & \frac{t}{1!} \\ & & & & & 1 \end{array} \right) )]

따라서 어떤 행렬의 n제곱이나 행렬지수를 쉽게 계산하고 싶을 때, 조르당 형식으로 변환하여 [math(A^n = S J^n S^{-1})], [math(e^{tA}=S e^{tJ}S^{-1})]로 계산하는 방법이 쓰인다. 선형미분방정식이나 점화식에 이들이 등장하는 만큼 다양하게 쓰일 수 있다.

다만 실제로는 조르당 분해 자체가 수치적으로 불안정(Numerically Unstable)하기 때문에 대다수의 수치 선형대수 프로그래밍에서 다루지 않는 경우가 많다. 참고
애초에 고유값부터 정확한 값을 구해야 하는데, 그러려면 특성 다항식을 정수나 유리수 형태의 정확한 숫자로 푸는 알고리즘을 적용하는 방법밖에 없고, 알다시피 5차 방정식 이상의 해법은 없기 때문에 아주 특이한 경우를 제외하고는 조르당 분해에 필요한 정확도의 고유값을 구하는 방법 자체가 없다.
반대로 부동 소수점을 이용해 고유값를 근사하는 알고리즘의 경우, 큰 매트릭스에서도 적용이 가능하지만, 두 고유값이 같은지 다른지 판별할 기준이 명확하지 않게 된다.


[1] 수학과 전공과목 대수학에서 등장함[2] S. Lang의 Algebra, 3rd Ed. (Springer, 2002) 중 Chapter XIV의 연습문제 14번을 보자. 이에 대한 더 자세한 설명(즉 솔루션)은 예를 들어 S. Sternberg의 Lie algebras (2004) 중 Section 4.3을 참고하라.[3] 만약 [math(a_i)]들 중에 0인 것이 있으면 아래 조건들이 이 조건을 자동으로 포함한다.[4] [math(N n_T(T) = n_T(T) N)]인 것으로부터 [math((n_T(T) - N)^r = \sum_{i = 0}^r (-1)^r \binom{r}{i} n_T(T)^{r - i} N^i)]임을 보자.