나무모에 미러 (일반/밝은 화면)
최근 수정 시각 : 2024-10-03 23:22:59

삼각수

1. 개요2. 구하는 법3. 삼각수의 합4. 기타5. 2000보다 작은 삼각수 목록6. 관련 문서


三角數 | triangle number

1. 개요

다각수의 일종으로, 정삼각형 모양을 만들기 위해 사용되는 숫자의 수를 말한다.

맨 윗줄부터 1개, 2개, 3개, ...를 나열한 결과로 도출되는 개수이기 때문에, n번째 삼각수는 1부터 n까지의 수를 모두 합한 수이다. 가령 10번째 삼각수면 1+2+3+…+8+9+10=55와 같은 식이다.

2. 구하는 법

1부터 [math(n)]까지의 합으로 구할 수 있다.
[math(n)] 번째 삼각수 [math(a_n)]에 대하여 [math(\displaystyle a_n=\frac{n(n+1)}{2})]을 만족한다.


몇 가지 예를 들어 보면 다음과 같다.

3. 삼각수의 합

[math(n)] 번째 삼각수 [math(a_n)]의 값은 [math(\displaystyle a_n=\sum^{n}_{k=1}k=\frac{n(n+1)}{2}=\frac{n^{2}+n}{2})]이라는 것과 [math(\displaystyle \sum^{n}_{k=1}k^2=\frac{n(n+1)(2n+1)}{6})]이라는 것을 이용하면 1 번째부터 [math(n)] 번째까지의 삼각수의 합 [math(\displaystyle \sum^{n}_{k=1}a_k)]는 [math(\displaystyle \frac{n(n+1)(n+2)}{6})]이다. 예를 들어 1 번째부터 4 번째까지의 삼각수의 합은 1+3+6+10=(4×5×6)/6=20이다.

4. 기타

5. 2000보다 작은 삼각수 목록

6. 관련 문서



[1] 예를들어 총 레벨 12인 구급차 미션의 경우는 12 번째 삼각수인 78명의 환자를 구해야 하고, 총 레벨 10인 피자 배달 미션의 경우는 10 번째 삼각수인 55판의 피자를 배달 해야한다. 즉, 클리어 레벨의 삼각수만큼 목표를 달성해야 하는 것이다.[2] 증명: [math(\cfrac{n(n+1)}{2}+\cfrac{(n+1)(n+2)}{2} = \cfrac{(n+1)(2n+2)}{2} = (n+1)^{2})]

분류