나무모에 미러 (일반/밝은 화면)
최근 수정 시각 : 2025-02-16 17:01:11

뫼비우스 함수


이 문서는 토막글입니다.

토막글 규정을 유의하시기 바랍니다.


특수함수
Special Functions
{{{#!wiki style="margin: 0 -10px -5px; min-height: calc(1.5em + 5px)"
{{{#!folding [ 펼치기 · 접기 ]
{{{#!wiki style="margin: -5px -1px -11px; word-break: keep-all"
<colbgcolor=#383B3D><colcolor=#fff> 적분 오차함수(error function)(가우스 함수 · 가우스 적분 함수) · 베타 함수(불완전 베타 함수) · 감마 함수(불완전 감마 함수 · 로그 감마 함수) · 타원 적분 · 야코비 타원 함수 · 지수 적분 함수 · 로그 적분 함수 · 삼각 적분 함수 · 쌍곡선 적분 함수 · 프레넬 적분 함수 · 구데르만 함수
미분방정식 르장드르 함수[math(^\ast)] (구면 조화 함수) · 베셀 함수 · 에르미트 함수 · 라게르 함수 · 에어리 함수
역함수 브링 근호 · 람베르트 W 함수 · 역삼각함수
급수 제타 함수 · 후르비츠 제타 함수 · 세타 함수 · 초기하함수 · 폴리로그함수 · 폴리감마 함수 · 바이어슈트라스 타원 함수
정수론 소수 계량 함수 · 소인수 계량 함수 · 뫼비우스 함수 · 최대공약수 · 최소공배수 · 약수 함수 · 오일러 피 함수 · 폰 망골트 함수 · 체비쇼프 함수 · 바쁜 비버 함수
기타 헤비사이드 계단함수 · 부호 함수 · 테트레이션(무한 지수 탑 함수) · 지시함수 · 바닥함수 / 천장함수 · 허수지수함수 · 혹 함수
[math(^\ast)] 특수함수가 아니라 특정 조건을 만족시키는 다항함수이지만, 편의상 이곳에 기술했다.
}}}}}}}}} ||

1. 개요
1.1. 예시
2. 성질

1. 개요

Möbius function

뫼비우스 함수는 정수론조합론에서 중요한 역할을 하는 함수로, 주로 정수론에서 소인수분해와 관련된 문제에서 사용된다.

정의역이 양의 정수일 때, 함수의 정의는 다음과 같다.

[math(\mu(n)=\begin{cases}1&(n=1)\\(-1)^{\omega(n)}&(n\;{\sf is\;square\;free\;integer})\\0&({\sf otherwise})\end{cases})]


여기서 [math(\omega(n))]은 소인수 계량 함수이다.

함수의 정의를 다시 설명하면 다음과 같다.

1.1. 예시

2. 성질

파일:상세 내용 아이콘.svg   자세한 내용은 뫼비우스 함수의 여러 가지 성질 문서
번 문단을
부분을
참고하십시오.