나무모에 미러 (일반/밝은 화면)
최근 수정 시각 : 2024-12-26 01:48:51

연율포고정식

연률포고정식에서 넘어옴

1. 개요2. 설명
2.1. 풀이 방법
3. 기타4. 수록 팩 일람5. 관련 카드

1. 개요

유희왕 오피셜 카드게임의 일반 함정 카드.

2. 설명

파일:連慄砲固定式.jpg

[include(틀:유희왕/카드, 함정=, 일반=,
한글판명칭=연율포고정식,
일어판명칭=<ruby>連慄砲固定式<rp>(</rp><rt>れんりつほうこていしき</rt><rp>)</rp></ruby>,
영어판명칭=Simultaneous Equation Cannons,
효과1=①: 레벨 / 랭크의 합계가\, 서로의 패 / 필드의 카드의 수와 같아지도록\, 자신의 엑스트라 덱에서 엑시즈 몬스터 2장(같은 랭크)과 융합 몬스터 1장을 제외한다. 그 후\, 이하의 효과를 적용할 수 있다.,
효과2=●상대 필드의 앞면 표시 몬스터 1장을 고르고\, 레벨 / 랭크의 합계가 그 몬스터의 레벨 / 랭크와 같아지도록\, 자신의 제외 상태인\, 엑시즈 몬스터 1장과 융합 몬스터 1장을 엑스트라 덱으로 되돌린다. 그 후\, 상대 필드의 카드를 전부 제외한다.)]
레거시 오브 디스트럭션에서 공개된 함정 카드로, 일시포고정식 다음으로 공개된 포고정식 시리즈로, 이번엔 연립방정식이다.

효과를 풀어 설명하면 다음과 같다.
  1. 이 카드의 발동을 선언한다.
  2. 이 카드의 처리 시에, 자신의 엑스트라 덱에서 같은 랭크의 엑시즈 몬스터 2장과 융합 몬스터 1장을 제외한다. (제외하는 몬스터들의 랭크와 레벨의 총합이 양 플레이어의 패 / 필드의 카드의 합계와 같아야 한다.)
  3. 그 후, 상대 필드의 앞면 표시 몬스터 1장을 고르고, 제외된 자신의 엑시즈 몬스터 1장과 융합 몬스터 1장을 엑스트라 덱으로 되돌릴 수 있다. (되돌리는 두 몬스터의 랭크와 레벨의 합계가 상대 몬스터의 레벨 / 랭크와 같아야 한다.)
  4. 되돌리는 것에 성공했다면, 상대 필드의 카드를 모두 제외한다.

제외된 몬스터를 되돌릴 때, 반드시 이 카드의 효과로 제외한 몬스터만을 되돌려야 하는 것은 아니다. 즉, 이 카드를 발동하기 이전에 이미 제외되어 있었던 엑시즈 / 융합 몬스터를 되돌릴 수도 있으며, 이러한 경우엔 아래에서 설명할 연립방정식과 별개의 추가 조합법이 생긴다. 이 카드를 2장 이상 사용한다면 이런 추가 조합법을 활용할 여지가 있다.

조건을 맞추는 데에 성공하면 엑스트라 덱에서 엑시즈 몬스터를 1장 제외하고 상대 필드의 카드를 모조리 제외하는 엄청난 위력을 가진 카드이지만, 이 카드를 사용하는 데에는 많은 어려움이 따른다.

그래도 상술한 문제점들을 잘 해결한다면 성공 시의 효과가 워낙 파격적이라 충분히 채용 가치가 있는 카드이며, 실제로 이 카드를 채용한 라뷰린스, 일명 수학라뷰가 입상하며 파워를 증명했다. 라뷰린스는 애초에 함정 카드 위주의 덱이고 엑스트라 덱 의존도가 매우 낮아서 이 카드를 쓰기 안성맞춤인데다, 현 환경에서 스네이크아이, 데먼스미스, 유벨, 순성 등 대부분의 2024년 환경 상위권 덱들이 레벨 6~10의 몬스터를 채용하고 있어 둥글게 대응할 수 있다. 상대가 이 카드에 체인해서 카드 수나 몬스터를 건드릴 위험성은 백은 성의 라뷰린스의 몬스터 체인 불가 효과로 차단하거나, 가구 / 아리아스로 카드 수를 조절해서 어느 정도 대처할 수 있다.

일반적으로 엑시즈 몬스터의 랭크는 3~6, 융합 몬스터의 레벨은 1~5로 맞추고 남는 자리는 데스캐스터, 앙헬, 티폰 등으로 채우거나 레벨 6~7 융합 몬스터를 추가한다. 12기 들어서 전후열을 모두 풍부하게 가져가는 덱에 시달리던 라뷰린스에게 동시견제라는 묵은 약점을 한방에 해결한다는 것이 최대 장점. 공략 하지만 무슨 수를 써도 2024년 4분기 메타 투탑인 라이제올M∀LICE를 공략할 수 없다는 치명적인 한계 또한 존재한다.

2.1. 풀이 방법

일단, 이 카드를 발동하기 이전에 제외된 융합 / 엑시즈 몬스터가 없다고 가정하자.

[math(A=)] 양 플레이어의 패 / 필드 카드의 수
[math(B=)] 상대 필드 위의 몬스터 1장의 레벨 / 랭크
[math(x=)] 자신이 엑스트라 덱에서 제외할 엑시즈 몬스터의 랭크[1]
[math(y=)] 자신이 엑스트라 덱에서 제외할 융합 몬스터의 레벨[2]

[math(\begin{cases}A=2x+y\\B=x+y\end{cases})]

이 방정식의 해는 다음과 같다.

[math(\begin{cases}x=A-B\\y=2B-A\end{cases})]

[math(x, y)]가 양의 정수이므로, [math(B<A<2B)]를 반드시 만족해야 한다. 이 조건을 확인한 후 [math(x, y)]를 계산하고, 이에 해당하는 몬스터들이 엑스트라 덱에 있는지 확인하면 된다.[3]
<rowcolor=#FFFFFF> 참고) B > 13인 상황에 대한 추가 설명
[ 펼치기 · 접기 ]

[math(B)]의 값은 상대 필드 위에 있는 몬스터의 원래 레벨 / 랭크 값이 아니라 현재의 레벨 / 랭크 값이므로 레벨 / 랭크를 증가시키는 카드의 효과에 의해 [math(B)]의 값이 13을 초과하는 상황이 생길 수 있다. 이러한 상황에서는 부등식 [math(B<A<2B)]을 만족하더라도 방정식의 해

[math(\begin{cases}x=A-B\\y=2B-A\end{cases})]

의 값이 통상의 범위 ([math(1≤x≤13)]), ([math(1≤y≤12)])를 벗어날 수 있으므로 주의한다. 예를 들어, [math(A=21)], [math(B=20)]이라면 부등식 [math(B<A<2B)]를 만족하지만

[math(\begin{cases}x=21-20=1\\y=40-21=19\end{cases})]

가 된다. 그런데 레벨이 19인 융합 몬스터는 존재하지 않으므로 [math(A=21)], [math(B=20)] 같은 상황에선 이 카드는 발동할 수 없다.

사실 엄밀히 말해서, 일반적인 범위의 [math(A)], [math(B)]에 대하여 [math(x)], [math(y)]가 통상의 범위 ([math(1≤x≤13)]), ([math(1≤y≤12)]) 내에 존재하려면 다음의 조건을 모두 만족해야만 한다. 실제 이 카드는 [math(A)], [math(B)]의 값이 다음의 조건을 모두 만족하는 상황에서만 발동할 수 있다.[4]
  • [math(3≤A≤38)] [5]
  • [math(2≤B≤25)] [6]
  • [math(2B-12≤A≤2B-1)]
  • [math(B+1≤A≤B+13)]
다만 실제 듀얼 상황에선 몬스터의 레벨 / 랭크가 13을 초과하는 상황이 흔하진 않기 때문에 이 조건들을 일일이 기억하고 있을 필요는 없다. 실제 듀얼에선 [math(B)]의 값이 13 이하인 상황이 대부분이고, [math(B)]의 값이 13 이하인 상황에선 [math(A)], [math(B)]의 값이 부등식 [math(B<A<2B)]을 만족하면 상술한 모든 조건이 자동으로 충족되기 때문이다. (필요충분조건)

이 카드의 사용법을 간단히 요약하면 다음과 같다.
1. 양쪽의 패 / 필드의 카드 수([math(A)])를 센다.

2. 상대 필드에, [math(0.5A)]보다 크고 [math(A)]보다 작은 레벨 / 랭크를 가진 몬스터가 존재하는지 체크한다. 그 값을 [math(B)]라고 하자.

3. [math(A-B)]가 자신이 엑스트라 덱에서 제외할 엑시즈 몬스터의 랭크가 된다.

4. [math(B)]에서 3의 결과값을 뺀 수치가 자신이 엑스트라 덱에서 제외할 융합 몬스터의 레벨이 된다.

Ex) 양쪽의 카드가 14장이고, 상대 필드에 레벨 8 몬스터가 존재한다면, 자신의 엑스트라 덱에서 랭크 6 엑시즈 몬스터, 레벨 2 융합 몬스터를 사용하면 된다. (14-8=6, 8-6=2)

실전에서는 1번과 3번만 집중적으로 생각하면 된다. 즉 패 / 필드의 카드 수를 계속 인식하면서, 거기서 상대 필드의 몬스터의 레벨 / 랭크를 뺀 숫자를 확인해, 그 랭크를 가진 엑시즈 몬스터가 엑스트라 덱에 있는지 확인하는 것이 중요하다고 할 수 있다. 2번은 4번이 존재하려면 따라오는 당연한 충분조건이고, 4번은 3번을 결정했으면 확정되는 조건이므로 크게 의식할 필요가 없다.

3. 기타

카드명은 '연립방정식(連立方程式)'[7]일본어 발음을 이용한 언어유희이다. 연립방정식은 일어로 '렌리츠호ː테이시키(れんりつほうていしき)'라고 발음하는데, 여기서 설 립(立, 리츠) 자를 떨릴 률(慄, 리츠) 자로 바꾸고 방정식 부분은 일시포고정식과 마찬가지로 방(方, 호ː)을 포(, 호ː)로 바꾸고 굳을 고(固, 코)를 추가했다. 풀이하면 연이어 무서운 포()를 쏘아 고정시키는 식 정도의 의미가 된다.

트랜잭션 롤백으로 이 카드의 효과를 베끼는 것은 가능하나, 이 카드는 별도의 발동 조건과 코스트가 없으며 모든 문장이 효과 처리이기 때문에 트랜잭션 롤백으로 효과를 베끼더라도 위의 문장에 따른 효과 처리를 전부 그대로 이행해야만 한다.[8] 그럴 바에야 길항승부를 베끼는 게 훨씬 간단하고 편리하다.

수학과 관련된 카드가 나온 이유는, 이 카드가 공개된 날짜인 2024년 1월 14일이 대한민국대학수학능력시험에 해당되는 일본의 2024년 대학입학공통테스트의 2일차가 되는 날이며 이 날 수학 과목의 시험이 실시되었기 때문인 것으로 보인다.

일러스트는 일시포고정식에서 등장한 기계가 레이저를 하나 더 발사해서, 두 레이저를 하나로 모으고 있다. 두 레이저가 만나는 지점은 x=4, y=5이고 연립방정식은 2x+y=13, x+y=9가 되는데, 레이저의 궤적 자체는 방정식과 관련이 없는 듯하다.[9] 그리고 방학숙제 끝!의 일러스트에서 이 연립방정식은 상하의 번개썸머의 여름방학 숙제라는 사실이 밝혀진다.

OCG에서는 노멀 레어로 출시되었으나 마스터 듀얼에서는 SR로 나와서 꽤나 부담없이 만들 수 있는지라 채용시도가 많다. 물론 그만큼 머리가 깨지는 사례도 많다(...)

4. 수록 팩 일람

수록 시리즈
2024-01-27 |
[[일본|]][[틀:국기|]][[틀:국기|]] LEDE-JP080 | レガシー・オブ・デストラクション [ LEGACY OF DESTRUCTION ]
2024-04-16 |
[[대한민국|]][[틀:국기|]][[틀:국기|]] LEDE-KR080 | 레거시 오브 디스트럭션
2024-04-26 |
[[미국|]][[틀:국기|]][[틀:국기|]] LEDE-EN080 | LEGACY OF DESTRUCTION

5. 관련 카드

5.1. 일시포고정식


[1] [math(1≤x≤13)][2] [math(1≤y≤12)][3] 참고로 [math(B)]의 값이 13 이하인 상황에선 [math(A)], [math(B)]의 값이 부등식 [math(B<A<2B)]을 만족하는 것은 앞에서 구한 방정식의 해가 ([math(1≤x≤13)]), ([math(1≤y≤12)])의 범위 내에서 존재할 필요충분조건이 된다. 하지만 [math(B)]의 값이 13을 초과하는 상황에선 부등식 [math(B<A<2B)]을 만족하더라도 앞에서 구한 방정식의 해가 ([math(1≤x≤13)]), ([math(1≤y≤12)])의 범위 내에 있지 않을 수 있으므로 주의한다.[4] 그렇지만 실전에서 이 카드를 사용하고자 한다면 이 부등식들을 일일이 고려하여 이 카드의 발동 가능 여부를 판단하기보다는 그냥 앞에서 구한 방정식의 해에 직접 대입하여 계산해 보는 것을 추천한다. 이 부등식들을 일일이 고려하는 것보단 그냥 방정식의 해에 직접 대입해서 확인하는 것이 훨씬 쉽고 간결하기 때문이다. 당장 위에서 예시로 들었던 [math(A=21)], [math(B=20)]인 상황에서도 [math(A)], [math(B)]의 값들을 앞에서 구했던 방정식의 해에 바로 대입 해보면 [math(x=1)], [math(y=19)]를 얻을 수 있었고, 이러한 상황에선 발동이 불가능하다는 것을 직관적으로 확인할 수 있다.[5] [math(A)]의 값은 38을 초과할 수 없기 때문에 양 플레이어의 패 / 필드의 카드 합이 38장을 초과한다면 이 카드는 [math(B)]의 값에 관계없이 발동할 수 없다.[6] 즉, [math(B)]의 값은 13을 초과할 수 있지만 13을 초과하는 경우에도 25를 초과할 수는 없다. [math(B)]의 값이 25를 초과한다면 이 카드는 [math(A)]의 값에 관계없이 발동할 수 없다.[7] 원래는 연이을 련()을 써서 聯立方程式이라고 쓰며 우리나라에서도 이와 같다. 일본은 연이을 련을 상용한자에서 제외시키면서 이와 동의자인 이을 련()으로 대체했다.[8] 당연한 이야기지만 효과 처리를 할 수 없는 상황에선 발동 자체를 할 수 없다.[9] 좌표 상에 2x+y=13 또는 x+y=9에 해당하는 직선(또는 3차원 공간 상에서의 면)이 그려져 있지 않으며, 레이저의 출발점 자체가 xy 평면에서 벗어나 있다.