1. 설명
1: Bell's Theorem: The Quantum Venn Diagram Paradox2: Some light quantum mechanics (with minutephysics)
편광을 이용해 벨의 부등식과 그 결론에 대해 간략하게 알아볼 수 있는 영상이므로 아래 설명이 잘 이해가 가지 않는다면 참고하기 좋다.
1964년 존 스튜어트 벨(John Stewart Bell, 1928 – 1990)이 발표한 부등식. 국소적(local) 숨은 변수 이론이 존재한다면 이들의 관측값이 만족해야 할 부등식이다. EPR에서 논의된 내용을 확장해서 연구하는 중에 발견되었다. 원래의 벨의 논문[1]에 따르면 다음과 같다.
[math(\left | \bar{P} (a, b) - \bar{P}(a, c) \right | \le 1+ \bar{P}(b, c) +\epsilon +\delta)] |
위에서 제시한 부등식은 측정값이 다를 확률로도 표현할 수 있다. 물리량 a와 b가 다르게 나올 확률을 [math(err(a,b))]라고 표현하면 [math(\bar{P} (a, b) = 2err(a,b)-1)]이며, 오차항을 무시하면 다음과 같이 표현된다.
[math( err(a,b) \le err(a,c) + err(b,c) )] |
이제, 동일한 스핀을 갖도록 설계한 두 개의 전자를 생각하자. 스핀의 측정은 3차원 공간의 어떤 방향을 기준으로 이루어지는데, 스핀을 측정하는 방향을 선택하면 스핀이 측정방향에 대해 위인지 아래인지가 확률을 가지고 결정된다.
Z축 방향의 스핀 측정 결과를 c라고 하고, Z-X평면상에서 각도 x만큼 반시계 방향에서의 스핀 측정결과를 a, 각도 x만큼 시계방향에서의 스핀 측정결과를 b라고 해보자. 하나의 전자쌍을 측정함으로써 a, b, c 중 두 방향은 동시에 측정가능하고, 이를 반복함으로써 a와 b가 동일하게 측정될 확률을 구할 수 있다.
실제로 a, b, c를 동시에 측정할 수 있는 방법은 없지만, EPR이 주장하는 실재성 가정에 따라, 전자 스핀 방향이 우리의 측정과 관계없이 3차원의 어떤 방향으로 정해져 있다고 가정하자. 그러면 a와 b가 다르게 나오는 경우에는 a와 c가 다르게 나오거나 b와 c가 다르게 나와야 한다. 따라서 위의 부등식은 숨은 변수 이론하에서 성립한다.
문제는 양자역학 이론에서의 예측이 이 부등식을 어기기 때문에 일어난다. 이론적으로는 각도가 x만큼 차이나는 두 측정 a, c에 대해 [math( \bar{P}(a,c) = \cos(x) )], 양자역학의 계산법칙에 따르면 두 스핀 측정결과가 반대로 나올 확률은 [math( \frac{1}{2}(1-\cos(x)) )]로 주어진다. 따라서
[math( err(a,b) - err(a,c) - err(b,c) = \cos(x)-\frac{1}{2}\cos(2x)-\frac{1}{2} )] |
1969년 존 클라우저(John Clauser) 등이 이를 더욱 일반화한 버전으로 다시 표현하고 벨 부등식을 검증할 실험을 설계했다. 그들의 논문[2]에 따르면 벨의 부등식은 다음과 같이 쓸 수 있다.
[math(\left | R (a,b) - R(a,c) \right | \le 1+R(b^\prime, b)+R(b^\prime,c)-R_1-R_2\le 0)] |
베르너와 볼프[3], 그리고 그와 독립적으로 주코브스키와 브루크너[4]는 벨의 부등식을 2개의 검출기 대신 N개의 검출기로 일반화한 다음의 부등식을 유도했다.
[math(\displaystyle \left | \sum_{s_{1},...,s_{N}=-1,1} S(s_1,...,s_N) \sum_{k_1,...,k_N=1,2} s_1^{k_1-1}\cdots s_N^{k_N-1}E(k_1,...,k_N)\right | \le 2^N)] |
일반적으로 얽혀있는 상태와 비국소적인 상태를 동의어로 쓰는 경우가 많지만, 이는 잘못된 것이다. 비국소적인 상태, 즉 벨 부등식을 어기는 상태는 모두 얽혀 있지만, 얽혀있는 모든 상태가 벨 부등식을 어기는 건 아니기 때문이다. 현대 양자 이론에서 많이 논의되고 있는 문제 중 하나가 이러한 벨 부등식을 깨는 상태와 얽혀있는 상태가 얼마나 다른지 알아보는 것이다. 더 자세하게 알고 싶은 전공자는 RMP 리뷰논문을 참고.
2. 여담
2022년 노벨물리학상은 이 분야에 대한 업적으로 수상했다. 수상자는 알랭 아스페(프랑스), 존 F. 클라우저(미국), 안톤 차일링거(오스트리아) 3인 공동 수상.[1] J. S. Bell, Physics 1, 195 (1964).[2] J. F. Clauser, M. A. Horne, A. Shimony and R. Holt, Phys. Rev. Lett. 23, 880 (1969).[3] R. F. Werner and M. M. Wolf, Phys. Rev. A 64, 032112 (2001).[4] M. Zukowski, C. Brukner, Phys. Rev. Lett. 88 210401 (2002).